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New interpretation of the boundary diffracted wave origin
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Abstract. The important improvement for Young’s model of diffraction is proposed. This
interpretation is based on the statement about the existence of the energy transfer process
directed from the remaining field towards the boundary wave, that is formally taken into
account by introduction of a source for this wave on boundary of a geometrical shadow. The
legitimacy of the application, in this case, of parabolic equation in the form of the standard
equation of diffusion - thermal conductivity is validated. With the help of such approach it
was obtained the compact analytical representation of this wave at the diffraction of a plane
wave on a half-plane, which is completely concordant with Sommerfeld’s rigorous solution
and available experimental facts.

Keywords: diffraction, boundary wave, half-plane, parabolic equation, boundary of a geo-
metrical shadow.

Paper received 05.10.99; revised manuscript received 22.12.99; accepted for publication 21.03.00.

1. Introduction

The evolution of the diffraction theory associated with
the substitution of fictitious secondary wave sources of
Hugens-Fresnel by the pair of real waves of Young-
Sommerfeld-Rubinowicz [1,2] had almost no effect on
practical optics where the customary Kirchhoff’s theory
is still dominating. This can be explained, in particular,
by abnormality of the boundary wave physical proper-
ties that are evidently exceed the limits general to all
traditional types of waves. (Wave abnormalities of the
similar kind have just recently become the subject of spe-
cialists’ interest. In this way the development of the so
called singular optics was initiated.) The boundary wave
appearance mechanism is the most enigmatic, and its in-
terpretation since Y oung did not pass further his hypoth-
esis on “a kind of reflection”.

The goal of the present paper is to validate a simple
and, according to author’s point of view, the most natu-
ral version of the boundary wave appearance which is
free from previous logical impediments and makes a new
statement of the diffraction problem possible. A particu-
lar solution of the problem for a half-plane coincides with
the Sommerfeld rigorous one but can be obtained by
simpler mathematical means.
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2. Logical prerequisites

Following Sommerfeld [1,2], let us consider the diffrac-
tion field as an aggregate of two wave components,
namely: geometrical, 45, the remaining part of initial
wave that is subjected to a discontinuity at the edge of the
screen and propagates further according to the geometri-
cal optics law; the second — boundary A4 g — cylindrical
wave, the geometrical center of which coincides with the
edge of half-plane (Fig. 1). The glow of a real screen
edge that corresponds to this wave can be easily observed
in experiments, but its true origin is still unknown.
Indeed neither reflection nor scattering of the incident
wave at the screen edge may cause it. This follows even
from the well established fact — neither reflectivity of an
obstacle material nor radius of curvature nor quality of its
edge finishing influence the diffracted field [1]. Artificial
introduction of scattering, for example, by making the
edge surface coarse, results just in general blurring of the
observed pattern [3]. Furthermore, the specific spatial
character of the boundary wave itself can be scarcely as-
sociated with any known phenomenon of this kind.
Years of unsuccessful search of the boundary wave
origin among known phenomena point out on the neces-
sity to introduce some qualitatively new hypothesis. How-
ever, as far as the author knows, the problem has not
been stated in a similar way yet. A recurrent decisive
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Fig. 1. Schematic explanation of diffraction field structure be-
hind the screen edge based on rigorous diffraction theory.

attempt to find in the boundary wave field any confirma-
tion of its interaction with a screen [4] that is almost con-
sidered as the criteria of physical validity of Young’s
concept in general, may serve as an example of a contem-
porary approach.

Explanation of the boundary wave power loss com-
pensation during its spatial spread remains very difficult
in this concept. As is well known, during a plane wave
diffraction at a half-plane the field amplitude at the
shadow boundary equals to the half of incident wave
amplitude regardless a specific position of the control
plane [2,5]. This circumstance being quite obvious in
Fresnel’s zone approach has no satisfactory explanation
after crossing over Young’s model. Moreover, any at-
tempt to explain the situation logically becomes here dif-
ficult without an assumption on continuous energetic re-
plenishment of the boundary wave.

The legitimacy of this assumption is also confirmed
by general evolution of the field formed at aperture dif-
fraction. Really, in immediate proximity to the aperture
practically entire wave energy penetrating through it
evidently belongs to the geometrical component of the
field. On the contrary, in the far field the prevalent part
of this energy is distributed beyond the limits of the geo-
metrical shadow where the presence of just boundary
waves is possible. As is obvious, there are all grounds to
connect real evolution of the diffraction field with the
existence of the directional energy transfer from geometri-
cal component towards boundary waves.

3. Hypothesis

To originate a description of the diffraction that would
non-contradictory combine all facts referred above, it is
sufficient to suppose that the real cause of the boundary
wave appearance is the discontinuity of wave field at the
edge of the obstacle. In the absence of appropriate physi-
cal grounds, this cause may be determined as the rule of
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inadmissibility of sudden changes for the intensity of free
electromagnetic wave. Action of this rule does not con-
tradict to the laws of electrodynamics and also matches
to all other existing requirements to field strength in non-
uniform space, for instance, to the continuity of its tan-
gential component or to the conservation of normal com-
ponent normalized onto the media dielectric constant.

As aresult, any wave front discontinuity leads to the
immediate conversion of its new edge into the compensat-
ing wave field which realizes required smoothing of origi-
nated sudden change in field strength. The ground for the
hypothesis is the extremely irregular structure of the bound-
ary wave itself which always is strictly concordant to spe-
cific parameters of the discontinuity. The only known situ-
ation in optics where such a rule may be realized is just
the diffraction that is originated by partial bordering of a
free wave. In this approach the real source of the observed
glow is the wave front discontinuity which is adjoined
with the screen edge at the initial moment.

Thus, the originated front cut is conserved and bound-
ary wave inevitably diverges - field discontinuity com-
pensation becomes incomplete at once. Therefore, the
energy inflow from the geometrical wave into the bound-
ary one does not cease, moreover it becomes a continu-
ous process directed towards the keeping of required com-
pensating field amplitude. This process explains the ob-
served energy replenishment of the bounrdary wave. The
field amplitude remains constant due to the dynamic equi-
librium between energy outflow and inflow in the discon-
tinuity area.

Taking into account all stated above, the formation of
the boundary wave should be interpreted as the specific
phenomenon caused by the ability of the electromagnetic
field to realize immediate auto-compensation of imposed
to it discontinuity. As the name of the phenomenon, it is
proposed to use the term «wave conversion». Already
mentioned difference of this phenomenon from traditional
wave processes (where transformation of one wave into
another is possible only at their nonlinear interaction)
becomes unimportant when considering the proposed
model, similarly to Huygens-Fresnel’s model of second-
ary waves, only as a mode of argumentation which is not
pretending to intrinsic “material” reliability.

Nevertheless, the problem of real existence of such
process remains unsolved. As the geometrical component
is not a wave in the conventional sense of this word and
can not be selected experimentally, it is hardly to logicaly
estimate its donor function from usual wave positions.
Therefore, it is impossible to consider the groundless state-
ment about the action of real energy redistribution proc-
ess inside the diffraction field. The serious reason for the
benefit of this version is the fact of successive growth of
the boundary wave energy observed in the experiment.

4. Mathematical means

The proposed interpretation has many common features
with the existing model of the diffraction process based
on its analogy with well known in optics and acoustics

255



S.V. Anokhov. New interpretation of the boundary diffracted wave origin.

phenomenon of wave amplitude transverse diffusion [6].
The advantages of such approach towards the diffrac-
tion were shown for the first time for solving the problem
of radio-waves distribution above the surface of the Earth
[7,8] and, later, during the development of open cavities’
theory [9]. It is talked about the application of the para-
bolic equation
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obtained from wave one through its application towards
weakly divergent waves in the form of

U(x,y,z,t) :A(x,y,z,t)ei(“t_kz), 2

where the amplitude 4 (x, y, z) is a slow changing (in the
scale of a wave length 1) function of coordinates, and the
direction of wave propagation coincides with axis z.

The transition from the wave equation to its much
simpler paraxial variant has appeared completely proved
just for the diffraction, where all major wave processes
are concentrated near the boundary of the geometrical
shadow, i.e. near the chosen direction of field propaga-
tion. (Other important class of problems for this equation
has appeared recently in connection with the study of
wave beams [10]).

The possibility to use the parabolic equation for the
description of the boundary wave is based on its quite
clear paraxial character. The computer analysis of the
Sommerfeld solution shows that up to 90 % of this wave’s
energy is focused in angular sector 8 < 6(A/2L)"2, whose
bisectrix is the boundary of the geometrical shadow
(Fig.1). It is easy to estimate that in visual range of spec-
trum (A = 600 nm) the indicated angle does not exceed two
degrees for the distance L = 1 cm from the edges of the half-
plane, and equals to twelve angular minutes for L = 1 m.

Let us note, that the accuracy of the paraxial approxi-
mation at description of the diffraction process is notice-
ably reduced only in immediate proximity to the edges of
the obstacle (L < 103 A), where the directional pattern of
the boundary wave is essentially broaden. However, this
correction has no practical value for calculations as the
most part of the electromagnetic energy in this area still
belongs to the geometrical component.

If one assumes that z = ¢t, i.e. chooses the frame of
reference moving with the speed of light along the z axis
(the beginning of which at the moment ¢ = 0 coincides
with the plane z = 0), the equation (1) becomes one of the
diffusion- thermal conductivity, well known in mathemati-
cal physics [6,11]:
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where D = Ac/473. The transition from the stationary equa-
tion (1) to the dynamic one (3) is possible to interpret as
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the returning to the presentation of propagating initial
wave (2), but with the relocation in two-dimensional trans-
versal system of coordinates (x, ), which moves together
with the wave.

The indicated replacement formally completely equal-
izes the considered process with well-studied diffusion
and thermal conductivity phenomena. The imaginary
value of D coefficient in this case only means that in con-
trast to the diffusion of material particles the referred
process has wave nature. The phenomenon described by
the equation (3) consists in transversal drift of wave am-
plitude revealing itself in gradual smoothing of any wave
amplitude gradient at the cost of its energy transfer along
the wavefront [6]. As an example of this process, the well
known transversal spread of restricted wave beams could
serve.

5. Diffraction of a plane wave on a half-plane

For approbation of the new approach, we took the well-
known problem of a plane wave diffraction on a half-
plane. Existence of Sommerfeld’s rigorous solution [1,2]
makes it possible to consider this problem as a test. First
let us solve it in a general form, without attracting of
Young’s model. We shall consider normal incidence of a
simple plane harmonic wave onto the arbitrary screen
with the rectilinear edge (Fig. 1). If one combines this
edge with the y axis, and the perpendicular of the plane
wave — with the z axis, the problem of the diffraction is
reduced to search of amplitude distribution 4 (x, ¢) that
would satisfy the equation (1) without the second member
in its right part and initial condition

04 for x=20,
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In the frame of reference connected with the propa-
gating wave, the considered problem represents one-di-
mensional diffusion process in unbounded limits (the
Cauchy problem): - 00 <x <o, t > (). Its solution is well
known [11]:

A(x, Z)——[]'HD%% )

2 Z . ,
where ®(z) = — | exp(—af2 )da is the error integral,

g

and for unity of length, depending on ¢, starts value

2Dt ASF (0) =0, it immediately follows from (5) that
the field amplitude on the boundary of the geometrical
shadow (x =0) is identical to 4y/2, i.e. equal to the half-
sum of their values on the left and the right sides of the
discontinuity point coordinate that is usual for diffusion
problems.
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Taking into account that the error integral is simply
bounded to the Fresnel integrals (for example, [12]):

cp%‘/?%ﬁ:cw)—m(v), (©6)

1% Vv
where, C(v) = [cosTer? @r , S(v) = [sintLr [ , the
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general distribution of the diffraction field (5) can be pre-
sented by expression

An\l+i
A(U):—O(2 1)%+C(U)E—i%+s(u)%, o)

inwhich u = x¥2/AL , and L = ctis a distance from the
observation plane to the diffraction one.

Accordingly, the intensity of this field is character-
ized by expressions J = A4 * or

2
J©) :A%gi%ww)g I %w(u)gg, ®

reproducing the field distribution that had already be-
come canonical. In this case, both distributions -
Kirchhoff’s and Sommerfeld’s - completely coincide [2].
Thus, the legitimacy of application of the non-stationary
parabolic equation (3) for solving similar problems gains
convincing confirmation.

Conclusion

Thus, with the separation of the diffraction field on “Young”
components - the geometrical one and the boundary wave —
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we face the objective necessity of introduction (at least, for-
mal) of the energy transfer process directed from the first
wave component towards the second. It is possible to have
skeptic attitude towards the idea of wave conversion, but the
self-coherence of the proposed model, eliminating practi-
cally all logic difficulties of Young’s approach can hardly
be denied. At the same time, all advantages of this approach
reducing the diffraction process to the interaction of two
standard wave components, evolving according to standard
algorithms, are maintained.
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