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Abstract
We have developed a hybrid neuro-robotic system based on
a two-way communication between the brain of a lamprey
and a small mobile robot. The purpose of this system is to
offer a new paradigm for investigating the behavioral,
computational and neurobiological mechanisms of sensory
motor learning in a unified context. The mobile robot acts as
an artificial body that delivers sensory information to the
neural tissue and receives command signals from it. The
sensory information encodes the intensity of light generated
by a fixed source. The closed-loop interaction between brain
and robot generates autonomous behaviors whose features
are strictly related to the structure and operation of the
neural preparation. In this paper we provide a detailed
description of the hybrid system and we present
experimental findings on its performance. In particular, we
found (a) that the hybrid system generates stable
behaviors; (b) that different preparation display different but
systematic responses to the presentation of an optical
stimulus and (c) that alteration of the sensory input lead to
short and long term adaptive changes in the robot responses.
The comparison of the behaviors generated by the lamprey’s
brainstem with the behaviors generated by network models
of the same neural system provides us with a new tool for
investigating the computational properties of

synaptic plasticity.

Introduction

Since its inception, robotic science has given great
contributions to the study of motor learning and control in
humans and other biological systems (Hildreth and
Hollerbach 1987). The most notable contribution has been
the determination of what interesting computational
problems must be solved by the brain as well as by an
intelligent machine when either one must control the
mechanical interaction between limbs and environment.
Theories concerning what computational problems must be
solved by an intelligent system have been called
“competence” theories (Marr 1982) to distinguish them
from “performance” theories, concerning the physical
processes that are actually chosen to solve a problem. In
this paper, we present a first attempt to utilize a robotic
system for investigating the neural processes underlying
sensory motor adaptation, that is for understanding a
distinctive feature in the performance of biological systems.
Our goal is to develop a computational
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Figure 1 - Robot Signal Flow Block Diagram. The neuro-robotic interface (shaded center region) translates the light
sensor data from the robot (right) into a stimulation pattern for the lamprey preparation (left). The neural response is
converted into motor signals by the interface.



and experimental framework for relating the
neurobiological study of neural plasticity-the modification
of neuronal excitability following past experience of input
and output patterns- to the behavioral functions that are
supported by neural plasticity.

The framework that we have developed is a hybrid
system, which establishes a two-way signal interaction
between a mobile robot and brain tissue maintained alive in
vitro from the reticular formation of the lamprey- a
primitive eel-like vertebrate. In this experimental
arrangement, the brain and the robot are interconnected in a
closed loop. They communicate through an interface that
transforms (a) light information from the robot's optical
sensors into electrical stimulation to the lamprey's
brainstem, and (b) recorded neural activity from two
brainstem nuclei into motor commands to the robot's
wheels (Figure 1). We have chosen the lamprey for this
first study because of the easy access in this preparation to
a system of very large neurons- the Muller cells in the
reticular formation- that integrate command and sensory
signals directed to the spinal motor centers.

From the standpoint of a neurobiologist, this neuro-
robotic system can be regarded as a system for
complementing the electrophysiological study of neuronal
properties with an artificial behavioral context. We must
stress the adjective "artificial", because the signals that
normally would travel along the circuits that we are
stimulating are signals of vestibular rather than visual
origin. In this brain stem preparation we have selected a
portion of neural circuitry that in normal circumstances
combines vestibular signals and motor commands to
stabilize the orientation of the body during swimming
(Rovainen 1979; Deliagina et al. 1992a; Deliagina et al.
1992b; Orlovsky, Deliagina and Wallén 1992). This
system has been shown to be adaptive, as unilateral lesions
of the vestibular capsules are followed by a slow
reconfiguration of neural activities until the correct postural
control is recovered (Deliagina 1995; Deliagina 1997). In
our hybrid system, vestibular signals are replaced by light
intensity signals. As the vestibular signals have a right and
left source- the two vestibular capsules - so do the two light
intensity signals originating from sensors on the right and
left side of the robot. Therefore, the natural stabilizing
behavior, in which the lamprey would track the vertical
axis, corresponds, in the hybrid system, to a positive
phototaxis, that is a tendency of the robot to track a source
of light. We are convinced that the properties of the
information processing associated with natural behaviors
may be explored by observing the information processing
associated with the artificial behavior. This, in a way, is a
consequence of the abstract and generalized nature of
information. An obvious advantage of our hybrid system,
always from the point of view of experimental
neurobiologists, is that, unlike natural motor behaviors,
artificial behaviors do not interfere mechanically with the
electrophysiological setup. In any study involving intra- or
extracellular recording, even the slightest motion of the
tissue tends to cause unwanted displacements of the

electrodes.
From the perspective of neural computation, the hybrid

system provides a means to test models of information
processing by direct interaction with a biological neural
network. As we detail in the methods section, the behavior
of the robotic system is described by a relatively simple-
and yet nonlinear- system of differential equations. To the
extent that the brain properties may be considered
stationary (over the time scale of robot movements), these
equations describe an autonomous system whose properties
are modulated by the structure of the neural pathways and
connections intervening between stimulating and recording
electrodes. Conversely, the observation of the sensory-
motor behaviors that emerge from this system offer an
insight into the computational structure of the neural
system. The search for such an insight is what drives our
study.

Here, we report three initial findings of this study. First,
we have succeeded in obtaining stable behaviors over
extended periods of time, characterized by repeatable
motor responses to a light source. Second, in different
preparations, we have observed different responses ranging
from light tracking to light avoidance. Through simple
simulations, we show how these different responses may be
readily accounted for by different patterns of connectivity
between stimulation and recorded signals. Finally, we have
observed plastic adaptive changes following the unilateral
alterations of the sensory inputs. These findings provide
supporting evidence for the use of neuro-robotic systems in
the study of the neurobiological mechanisms of sensory
motor learning.
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Figure 2 - Simple two layer neural network with two inputs,
two outputs, and four weights.

Methods

In this section we describe the components of our hybrid
neuro-robotic system, the experimental setup used to
assess its performance, and the basic computational model
that characterizes the system's behavior.

The neural preparation
The neural component of the hybrid system is a portion of
the brainstem of the Sea Lamprey in its larval state. In
larvae of Sea Lamprey Petromyzon marinus, anesthetized
with tricane methanesulphonate (MS222, 100-200 mg/l),
the whole brain was dissected and maintained in



continuously superfused, oxygenated and refrigerated (9-
11°C) Ringer's Solution (NaCl, 100.0 mM; KCl, 2.1 mM;
CaCl2, 2.6 mM; MgCl2, 1.8 mM; glucose, 4.0 mM;
NaHCO3, 25.0 mM); details in Alford et. al. (1995).

We recorded extracellularly the activity of neurons in the
a region of the reticular formation, a relay that connects
different sensory systems (visual, vestibular, tactile) and
central commands to the motor centers of the spinal cord.
We placed two recording in the right and left Posterior
Rhombencephalic Reticular Nuclei (PRRN). We also
placed two unipolar tungsten stimulation electrodes among
the axons of the Intermediate and Posterior Octavomotor
nuclei (nOMI and nOMP). These nuclei receive inputs
from the vestibular capsule and their axons form synapses
with the Rhombencephalic neurons on both sides. The
impedance of the stimulation electrodes ranged between 1
and 2 MΩ. Recording electrodes were glass micropipettes
filled with 1M NaCl (1.5-10 MΩ impedance). The
recorded signals were acquired at 10kHz by a data
acquisition board (National Instruments PCI-MIO-16E4)
on a Pentium II 200MHz computer (Dell Computer Corp.).

Figure 3 – Robot setup. Using a pattern of colored circles
(lower inset), the overhead camera tracks the robot.
Trajectories are plotted, each symbol representing a target
light.

Electrode placement
While the axons of the nOMI remain ipsilateral, those of
the nOMP cross the midline. As a result, the activity of one
vestibular capsule affects both the ipsilateral and

contralateral reticulo spinal (RS) nuclei. We placed each
stimulating electrode near the region in which the axons of
the nOMI and nOMP cross (Figure 1). This placement of
the electrodes also induced predominantly excitatory
responses in the downstream neurons. The recording
electrodes were placed on either side of the midline, near
the visually identified neurons of the PRRN. To verify the
placement of the stimulating electrodes we delivered brief
single stimulus pulses (200µs) and observed the response in
both the ipsilateral and contralateral PRRN neurons. Once
it was determined that the stimulation electrodes were
properly placed, the recording electrodes were moved
caudally in order to pick up population spikes.

The robot
The robot system is the base Khepera module (K-Team).
Its small size allows us to use a small workspace (Figure 3).
A circular wall was constructed with a 2 foot diameter and
then painted black to reduce the amount of reflected light.
Placed along the circumference of the robot are eight
sensors each providing proximity and light intensity
information. The sensors are located on opposite sides of
the robot’s midline at 10°, 45°, 85°, and 165° from the
front position. Two wheels provide a means of locomotion
for the small robot. Our computer system communicates
with the robot through the serial port and a custom
designed LabVIEW© application. Eight lights are mounted
at the edge of the robot workspace at 45° intervals. The
lights were numbered one through eight moving counter
clockwise with light number one located at the right most
position (0°). The lights are computer controlled using the
digital outputs of our acquisition card. These lights
generate the stimulus that elicit a phototactic response.

The interface
The interface acts as an interpreter between the neural
signals and the robot control system (Figure 1). It is
responsible for the transformation of the robot’s light
sensor information into vestibular inputs and then
processing in real time the neural activity of the reticulo-
spinal nuclei and translating it into motor commands for the
robot.

Stimulus
The light intensities detected by the robot sensors
determine the frequencies at which the right and left
vestibular pathways are stimulated. As stated above, there
are eight light sensors on the robot. We weighted the
sensors to give the greatest strength to sources of light that
come at 45° and to ignore the rear sensors. The weighted
sum of the sensors on each side is multiplied by a gain
factor which determines the maximum stimulation
frequency. The final result is the frequency at which we
stimulate each side. We use the digital counter on the
acquisition board to generate a pulse train. This pulse train
is delivered to the neural preparation by the tungsten
electrodes after passing through ISO-Flex stimulus
isolators.
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Neural Response
The spiking activity of the PRRN as recorded near the
axons is analyzed through a five step process. The signal
picked up by the recording electrodes contains a
combination of spikes, stimulus artifacts, excitatory and
inhibitory postsynaptic potentials (PSP) and noise. To
suppress the slow PSP components, this signal is first put
through a high pass filter (cutoff at 200 Hz). The output of
this filter contains high frequency noise, stimulus artifacts,
and the spikes generated by multiple neurons in the vicinity
of the electrode. Stimulus artifacts are canceled by zeroing
the recorded signals over temporal windows of 4 ms
following the delivery of each 200 µs stimulation pulse.
The remaining signal is rectified, and a threshold is applied
to separate the spikes from the background noise- under the
assumption that the spike amplitude is much larger than the
noise amplitude. The resulting train of spikes, is put
through a low pass filter (5 Hz) which effectively generates
a rate coded signal. The mean of this signal is used as a
control signal for each of the robot's wheels.

The interface is calibrated so as to account for random
differences between the recorded responses from the left
and right side of the brainstem. Indeed, the net intensity of
the signal picked up by each electrode depends on a
number of uncontrollable factors, such as the actual
distance from signal sources. To compensate for these
random factors, we make the working assumption that
when both left and right sides are stimulated at the same
frequency, the same motor response should be obtained on
each side of the robot. This corresponds to stating that all
initial asymmetries between right and left side are artifacts.
Accordingly, all initial difference between right and left
responses to the same right and left signals are balanced by
regulating two output gains.

In most cases, the right and left sides of the neural
preparation were connected both in input and in output
with the corresponding sides of the robot (direct mode).
However, as discussed below, in some cases it was
necessary to implement a reverse mode option. When
connected in reverse mode, the right recording electrode is
connected through the interface to the controller of the left
wheel and vice versa.

Movement acquisition
The robot position and orientation is sampled and acquired
using an overhead color camera (Ultrak STC-630A). The
image frames are analyzed using a Newton Research Labs
Cognachrome 2000 Vision System. The Cognachrome
vision system is capable of simultaneously tracking up to
three different colors. We have chosen a blue, red, and
pink colored circle arranged in an equilateral triangle
(Figure 3). The Cognachrome system captures video
frames at 60 Hz, and then each frame is analyzed to
determine the center and area of each colored centroid. If
all three centroids are visible, the orientation of the robot is
calculated and the mean of all centers is calculated to
determine the center of the robot. If the area of a centroid
drops below a specified amount, the remaining two

centroids are used to determine both the position and
orientation. This reduces the probability that the position
and orientation are lost due to partial occlusion of the set of
centroids.

Trajectories induced by the same light stimulus were
quantitatively compared using a figural distance measure
(Conditt, Gandolfo and Mussa-Ivaldi 1997). The figural
distance between two trajectories, A and B, is based on the
repeated measure of the Euclidean distance between each
point in one trajectory and all the points in the other. If the
trajectory A has n points, {A(1), A(2), . . . , A(n)}, and the
trajectory B has m points, {B(1), B(2), . . . , B(m)} , then
one derives the n-dimensional vector

)1())()((min)(dist
j

nijBiAiBA ≤≤−=−

and the m-dimensional vector

)1())()((min)(dist
i

mjjBiAjAB ≤≤−=−

Then, the figural distance between A and B is defined as

)()(dist)(dist),( A-BB-A nmjiBA
ji

++=ε

The figural distance between two trajectories is a
symmetric measure of the difference between the shapes of
the respective paths. In each experimental set we
considered movements to five different targets. Then, we
constructed a net figural distance between two sets by
summing the figural distances between trajectories to the
same lights.

Simulation
To simulate the artificial behaviors generated by the cyborg
we consider the interaction of three systems: a) the robot’s
motor system b) the robot sensory system and c) the
lamprey’s brain.
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Figure 4 – The dynamics of the robot are described by
three nonlinear first order differential equations.

Robot motor system. The dynamics of the mobile robot
are described by a system of three nonlinear first-order
differential equations (Figure 4a). Here, ( )YX cc , are the

coordinates of the Khepera’s center with respect to a fixed
laboratory frame, θ is the angle of the line passing through
the wheels (the axle) with respect to the x-axis of the same
frame, ρ is the wheel radius (0.3cm) and D is the axle



length (5.3cm). The state of this system is described by the
3D vector ( )θ,, YX cc . The input is the 2D vector,

( )RL ωω , , of angular velocities of the left and right wheel.

Light sensors. The intensity signal generated by each
sensor ( )LR ii , is inversely proportional to the square
distance to the light source (Figure 5b).

rL

rR

φ L

light

a

( )LR
LR

LR r

I
i /2

/
/ cos ϕ⋅=
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Figure 5 – The response of the robot’s sensors are a
function of distance and angle from the light source.

The angle ϕ is the “preferred direction of the sensor”, that

is the direction of maximum response. The source is fixed
in the environment and has an emission intensity, I. Under
these assumptions, the intensity signals, ( )LR ii , , are both

functions of the robot’s state:

),,(// θ= YXLRLR ccii .

Lamprey’s brain. Unlike the robot, the operation of the
brain is essentially unknown. The purpose of the hybrid
system is actually to investigate the computational
properties of this neural tissue. In our simulations, we
considered an extremely simplified linear model of this
neural system (Figure 2). There are two inputs- the light
intensity signals used as stimuli - and two outputs – the
angular velocities of the wheels. These signals are
connected by a “weight matrix”, W, whose elements may
be taken to represent the strengths of the connections

between inputs and outputs. Positive weights represents
excitatory connections and negative weights inhibitory
connections.

The whole system. When all the above components are
assembled into a single system, one obtains three
differential equations in which the rate of change of the
state vector depends only upon the state vector itself, and
not on time:

=
=
=
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),,(

),,(
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Wccfc
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YXY

YXX

θθ
θ
θ

r

r

r

(1)

This is called an autonomous system. Here, we have
emphasized that the particular behaviors emerging from
this autonomous system are determined by the parameters
that describe the behavior of the neural system and that are
assumed to be time-invariant (or, at least, to be varying on
a time scale that is much longer than the scale of each
behavior). In this first simulated approximation, the neural
parameters are fully expressed by a 2x2 matrix W. But, of
course, to capture with high accuracy the behavior of the
real system it will be necessary to utilize more complex
models.

Results

Stability
In these experiments, the lamprey's brain was maintained in
vitro for periods ranging from 4 to 8 hours. In most cases,
the preparation maintained its full responsiveness across
the entire experiment. In addition to the overall health of
the preparation, other factors affecting the persistence and
stability of behaviors are (a) the displacement of the
electrodes within the neural tissue and (b) local damage to
neural tissue caused by repeated stimuli. Figure 6 shows the
behaviors generated by what we considered to be an
unstable preparation. The four panels display four
consecutive experimental sets separated
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Figure 6 – Unstable robot trajectories. Panels a and b were separated by 10min, b and c by 5min, and c and d by 0min. The
trajectories generated by the light marked with a star (*), circle (o), and square (�) vary greatly from one trial to the next.
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Figure 7 – Figural error of the unstable trajectories. The
first bar is the error between panels a and b of Figure 6,
second bar for panels a and c, and third bar for a and d.

by intervals of 10min, 5min and 1min. During each
experimental set, the lights indicated by different symbols
along the workspace boundary were turned on in sequence.
We collected trajectory data from the moment the light
turned on until the robot either stopped moving or reached
the edge of the workspace. A single trial set contains the
trajectories collected as the robot reacted to each light. It is
evident that the trajectories in the four panels of Figure 6
change rather drastically from trial to trial. This variability
is quantified by the figural error plots in Figure 7. One may
see that there is a particularly strong variation between trial
1 and trials 2 and 3. Whenever we observed this kind of
unstable behavior - quantified by a net figural error larger
than 2.5cm - we moved the stimulation and/or recording
electrodes to different sites. If these adjustments did not
result in some improvement, we discarded the preparation.
Figure 8 shows a set of stable behaviors. The panels are
arranged as in Figure 6. The variability of the trajectories in
Figure 8 is expressed by the figural errors shown in Figure
9. Although some amount of variability between different
trial sets is still visible, the predominant positive phototaxis
is evident in all panels and the overall trajectory shapes are
similar for trajectories elicited by the same lights. We
considered for further analysis only

preparations with stability comparable or better than shown
in this example, as determined by a figural error of less
than 2.5cm.

Behavioral responses
The features of the trajectories generated by the neuro-
robotic system depend upon the pattern of neural
connections between stimulating and recording electrodes.
In a first approximation, one may represent the operation of
these connections by the linear two-layer network of Figure
2. We have combined this simple network model with a
simulator of the Khepera dynamics. The response of the
combined system to a source of light is described by a set
of three nonlinear first-order autonomous equations
(Equation 1). By simulating these equations we could
predict the general features of trajectories corresponding to
different patterns of stimulation/recording connectivity.
The structure of the connection matrix, W, establishes the
sign of the ensuing phototactic behavior. In case of pure
ipsilateral excitatory connectivity (right-to-right and left-to-
left), the off diagonal terms are both zero and the diagonal
terms are positive. When the diagonal terms are equal (that
is when the connectivity matrix is proportional to the unit
matrix,) then the resulting behavior is a negative
phototaxis- i.e. movement away from the light source - as
shown in Figure 10b. In contrast, if there is purely
contralateral excitatory connectivity (right-to-left and left-
to-right), the diagonal terms are zero and the off diagonal
terms are positive. The resulting trajectories (Figure 10a)
correspond to positive phototaxis- i.e. movements toward
the light. A broad spectrum of intermediate behaviors (an
example is in Figure 10c) is obtained by matrices with both
diagonal and non-diagonal terms and with different degrees
of asymmetry.

Depending on the placement of the electrodes in the
actual neural tissue, we were able to observe both positive
and negative phototaxis, as well as intermediate behaviors
(Figure 11). It is worth observing that negative phototaxis
with the actual system tended to result in shortened
trajectories compared with negative phototaxis in the
simulator (Figure 11c). This is likely due to the rapid drop
in light intensity as the Khepera moved away from the light
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Figure 8 – Stable robot trajectories. Panels a and b were separated by 10min, b and c by 5min, and c and d by 0min.
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Figure 9 – Figural error of the stable trajectories. The first
bar is the error between panels a and b of Figure 8, second
bar for panels a and c, and third bar for a and d.

source. Because of scattering and other phenomena not
included in the model, the actual drop in light intensity was
more pronounced than the simulated drop. This effect is
compound by the presence of friction, which is also not
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Figure 10 - Different matrices W are used with the two
layer network model and the robot simulation to generate a)
negative, b) positive, and c) mixed phototaxis.

included in the model. To obtain, in cases like this one, a
higher sensitivity of the observed behaviors in response to
the different light sources, we biased our preparation
toward positive phototaxis by selecting the reverse mode
option that is by connecting the right electrode to the left
wheel controller and vice versa. This operation is
equivalent to exchanging off-diagonal with diagonal
weights in the connectivity matrix

Adaptive modification of artificial behavior
The neural component of the hybrid system is a portion of
the brainstem, the reticular formation, that normally
combines vestibular information with other sensory inputs
and descending commands. The outcome is a neural signal
that modulates the ongoing activity of the spinal cord for
the control of swimming movements (Grillner et al. 1983;
Grillner and Mastushima 1991). A significant feature of
this circuitry is its ability to modify the efficacy of its own
synaptic connections in response to sustained patterns of
stimulation. Both long-term potentiation (LTP) and long-
term depression (LTD) have been documented (Schwartz et
al. 1998). We wished to explore the possibility of using our
system for observing the effects of plastic changes on
artificial behaviors and for separating, on the basis of this
observation, the effects of long-term changes from those of
short-term changes.

To generate adaptive changes in the neural preparation,
we doubled the sensitivity of the light sensors on the left
side of the robot while leaving unchanged the sensitivity on
the right. This alteration induced the change in behavior
shown in Figure 12a and Figure 12b. The trajectories with
the initial setting of gains are displayed in Figure 12a
whereas the trajectories in Figure 12b were obtained
immediately after the change in the left light sensors. It is
possible to observe a predominant clockwise rotation of the
trajectories. Immediately following the acquisition of the
trajectories, the robot was placed in its home position
(center of workspace with the “nose” facing the light
number 1, at 0°) and fixed in place so that it could not
move. Light number one was turned on for a period of five
minutes. Although both sides of the robot were exposed to
approximately the same amount of light, the increased
sensitivity on the left side doubled the corresponding
frequency on the left side of the lamprey. Following this
extended period of stimulation, a second set of trajectories
was recorded (Figure 12c). These trajectories were highly
distorted, compared to those obtained in the initial phase of
the experiment. There is a strong clockwise rotation
together with the formation of circular patterns. Such
circular patterns are a typical sign of strong imbalance
between right and left channels.

This particular experiment was conducted in reverse
mode. Therefore, the clockwise rotation of the trajectories,
which reflects an increase in speed of the left wheel (and/or
a decrease of the right), is due either to an increase in
response of the right reticulo-spinal neurons (and/or to a
decrease in responsiveness of the left neurons).
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Figure 11 – In these trials, the robot displays behavioral patterns that can be classified as: a) negative, b) positive, and c)
mixed phototaxis.

Considering that the preparation had a predominant
ipsilateral response- because the reversed response was
predominantly a positive phototaxis- these changes are
likely to reflect a depression of the synapses in the left
reticular nucleus rather than a potentiation of the right
neurons.

A final, third set of trajectories was recorded after a 5
minutes resting period (Figure 12d). Here, the lamprey's
brain appears to have over compensated for the change in
synaptic efficacy induced by the prolonged stimulation at
rest. Comparing the trajectories in Figure 12c to those in
Figure 12d, it appears that in the last stage of the
experiment the trajectories have a large counter clockwise
shift. Although these are preliminary results, it is possible
to speculate that this rotation reflects not only the end of
the short-term change seen after the prolonged stimulation,
but also the onset of a trend toward the adaptive
compensation of the initial response to the change in sensor
balance. Such a long-term compensation could be
accounted for by an unsupervised Hebbian regulation of
synaptic plasticity elicited during the trials in which the
robot moved in response to the light stimulus.

Discussion

The work described in this paper is a first step toward the
realization of a hybrid neuro-robotic system for the
investigation of the neurobiological basis of sensorimotor
learning and behavior. We have created a system in which
a portion of neural tissue from the lamprey's reticular
formation is connected through a computer interface with a
small mobile robot. The optical sensors on the robot
determine the parameters of the electrical stimuli delivered
to the vestibular axons of the lamprey. The signals
recorded from the neural populations with which these
axons form synapses are used as control signals for the
robot's movement. The idea of using neural signals for
driving mechanical apparatus is certainly not new.
Research in prosthetic devices has long been pursuing the
use of myoelectrical signals for controlling artificial
replicas of the limbs (Abul-Haj and Hogan 1990). More
recently, Chapin and coworkers (1999) have developed an
experimental paradigm in which the signals recorded from
a population of neurons in the motor cortex of the rat were
used to drive a mechanical lever which controlled the the
release of a food reward. The study of Chapin and
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Figure 12 - Sensor sensitivity was unilaterally doubled. Trajectories were recorded a) before any changes in sensitivity were
made, b) immediately following this change, c) after five minutes of steady stimulation, and d) after a five minute resting
period.



coworkers has provided us with new evidence that motor
cortical activity may be dissociated from the activity of
limb muscles. The same cortical activity observed when
the reward was obtained by a movement of the paw could
also be maintained when the same reward was obtained by
a movement of the mechanism and with the paw at rest. A
distinctive feature of our hybrid system is that it exploits a
closed-loop relation between the neural tissue and robot,
which operates as an artificial body. In this closed-loop
arrangement, the movements determined by activities in the
reticular neurons cause changes in the robot's exposure to
the light generated by a fixed source. These changes, in
turn, cause a variation in the electrical stimulus that is
responsible for the activities in the same reticular neurons.
This paradigm is well suited for investigating the operation
of Hebbian learning mechanisms (Edeline 1996; Pennartz
1997; Shors and Matzel 1997; Grzywacz and Burgi 1998)
by which the strength of a given synapse is modified based
on the correlation between pre and postsynaptic activities.

We have found that, with some exceptions, our neuro-
robotic system generated stable behaviors over extended
periods of time. The lamprey's brain can indeed be
maintained alive in vitro for entire days. In these
experiments- which lasted only a few hours- we have
assessed stability by observing the repeatability of the
trajectories triggered by light sources placed at different
locations. We do not need to stress that the stability of the
behaviors generated by our preparation is a necessary
condition for proceeding with further analysis and, in
particular, with investigations that assume that the neural
connectivity remains invariant over the time scale of
individual sensory-motor responses.

The second finding of our study is the observation of
different type of phototaxis in different preparations. We
observed light-seeking behaviors (positive phototaxis),
light aversion behaviors (negative phototaxis) and linear
combinations of light seeking and light aversion (mixed
phototaxis). A simple linear model is sufficient to account
for these different types of behavior on the basis of the
amount of ipsilateral and contralateral connections between
stimulating and recording electrodes.

We must acknowledge, at this point, that our work has
been profoundly inspired by some ideas that Valentino
Braitenberg expressed almost 20 years ago, at the
beginning of the “connectionist revolution” (Braitenberg
1984). In his delightfully entertaining book, Braitenberg
described how relatively simple connections between
sensors and motors could endow some imaginary
mechanical vehicles with life-like behaviors. These are
behaviors that could easily be interpreted as intelligent or
emotional responses to environmental stimuli. While the
sensory-motor responses generated by our neuro-robotic
system are not as remarkable as some of the behaviors
described in that book, this system may be regarded as an
implementation of Braitenberg's ideas and, in particular, of
the idea of connecting the study of cellular brain structures
with the observable responses that may be supported by
these structures. As a parallel to Braitenberg’s

“experiments in synthetic psychology”, one could call the
studies with the neuro-robotic system an experiment in
synthetic neurobiology.

Finally, we have observed systematic adaptive responses
induced by the selective alteration of the sensor signals on
one side of the robot. In particular, we have observed a
strong alteration of behavior followed by gradual return
toward the initial responses. The possibility to generate
adaptive changes in the robot's behavior opens the way to
using the neuro-robotic interface for studying the
transformations induced in the brain tissue by long and
short- term modifications of synaptic properties. This
system offers the possibility of substituting the actual brain
tissue with a computational model of its neurons and its
connections. The comparison of biological adaptive
changes with their simulated counterparts may provide us
with new means to directly investigate the computational
properties of synaptic plasticity.
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