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Abstract. Different definitions of the signal-to-noise ratio (SNR) are be-
ing used as metrics to describe the image quality of remote sensing
systems. It is usually not clear which SNR definition is being used and
what the image quality of the system is when an SNR value is quoted.
This paper looks at several SNR metrics used in the remote sensing
community. Image simulations of the Kodak Space Remote Sensing
Camera, Model 1000, were produced at different signal levels to give
insight into the image quality that corresponds with the different SNR
metric values. The change in image quality of each simulation at different
signal levels is also quantified using the National Imagery Interpretability
Rating Scale (NIIRS) and related to the SNR metrics to better under-
stand the relationship between the metric and image interpretability. An
analysis shows that the loss in image interpretability, measured as DNI-
IRS, can be modeled as a linear relationship with the noise-equivalent
change in reflection (NEDr). This relationship is used to predict the val-
ues that the various SNR metrics must exceed to prevent a loss in the
interpretability of the image from the noise. © 2001 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.1355251]

Subject terms: image quality; remote sensing; satellites; digital imaging; imaging
systems.
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1 Introduction

The signal-to-noise ratio~SNR! is a common metric used t
communicate the image quality and radiometric perf
mance of a remote sensing imaging system. Much con
sion has arisen, however, as to the definition that on
using when discussing SNR performance. When a cam
designer specifies an SNR value, it is not always clear h
that value was calculated and how it relates to the im
quality of the system. For example, if an SNR of 30
quoted for a system design, it is not clear if the ima
quality is good or bad. It is also possible to quote a h
SNR value and a low SNR value for the same system
sign and imaging conditions if different SNR metrics a
used, even though the image quality is the same. This s
looks at several SNR metrics used in the remote sen
community and shows their relationship to image qua
and image interpretability using high fidelity image sim
lations. The first step in defining SNR metrics is to revie
the derivation of the signal and noise terms for remote se
ing systems.

1.1 Signal

For this analysis, it will be assumed that the remote sens
system consists of a camera with a digital focal plane ar
that acquires images in the visible spectrum. Figure
shows the process by which the final count value in
digital image is derived from the spectral radiance o
ground target illuminated by the sun. The digital cou
value of each target pixel in the final image is related to
signal produced by the target radiance. Unfortunately,
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exact one-to-one relationship between the digital co
value and the actual target radiance does not exist, bec
the count value also contains signal terms from ot
sources, i.e., thenoise.Although the signal in the final im-
age is represented in digital counts, the signal for rem
sensing system designs is generally calculated as the n
ber of photoelectrons produced by the remote sensing
ellite’s detector. The mathematical derivation of the e
pected signal from the target,starget, calculated as the
number of photoelectrons produced by the remote sen
satellite’s detector, from a target on the ground follows.

The spectral radiant exitance of a blackbody, for a giv
wavelength of lightl, is given by Planck’s equation1,2

MBB~l,T!5
2phc2

l5

1

exp~hc/lkT!21
~W/m2mm!, ~1!

where T is the temperature of the source in kelvins,h
56.63310234 J s, c533108 m/s, andk51.38310223

J/K. For a Lambertian surface, the spectral radiance fro
blackbody is given by

LBB~l!5
MBB~l,T!

p
~W/m2 mm sr!. ~2!

If the exitance from the sun is approximated by that o
blackbody, then the solar spectral irradiance on a targe
the ground can be approximated as
0 © 2001 Society of Photo-Optical Instrumentation Engineers
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Fiete and Tantalo: Comparison of SNR image quality . . .
Etarget~l!'MBB~l,Tsun!
r sun

2

r earth-sun
2

tatm
sun-targ~l!

3cos~fzenith! ~W/m2 mm!, ~3!

wherer sun is the radius of the sun,r earth-sunis the distance
from the earth to the sun,tatm

sun-targis the atmospheric trans
mittance along the path from the sun to the target,fzenith is
the solar zenith angle, andTsun is approximately 5900 K.

The spectral radiance from a Lambertian target at
entrance aperture of the remote sensing satellite is1,2

L target~l!5tatm
targ-sat~l!H r target~l!

p
@Etarget~l!1Eskylight~l!#

1e target~l!LBB~l,Ttarget!J ~4!

where tatm
targ-sat is the atmospheric transmittance along t

path from the target to the satellite,r target is the reflectance
of the target,e target is the emissivity of the target, an
Eskylight is the irradiance on the target due to the skylig
from atmospheric scattering. Radiometry models, such
MODTRAN, are generally used to calculateL targetbecause
the radiometric calculations are dependent on the acq
tion geometry and can be complicated.1,2 Note that the

Fig. 1 The process by which the final count value in the digital
image is derived from the spectral radiance of a ground target illu-
minated by the sun.
-

spectral radianceL target is a combination of the solar irradi
ance that is reflected from the ground target and the bla
body radiance from the target. This analysis will focus
remote sensing in the visible imaging spectrum only, so
will be assumed that the term containingLBB(l,Ttarget) is
negligible compared to the solar irradiance term.

Figure 2 illustrates an imaging system at a distan
Rtarget from the target with the focal plane at a distan
Rimage from the camera optics. For a polychromatic remo
sensing camera where the aperture is small compared to
focal lengthf, the radiant flux within the spectral passba
reaching the entrance aperture of the camera from the ta
is1,3

Faperture5
AtargetAaperture

Rtarget
2 E

lmin

lmax
L target~l! dl

5AtargetVE
lmin

lmax
L target~l!dl ~W!, ~5!

wherelmin andlmax define the spectral passband,Atarget is
the area of the target,Aaperture is the area of the camer
aperture, andV is the solid angle encompassing the ap
ture area. The area of the image,Aimage, is given by

Aimage5m2Atarget, ~6!

wherem is the magnification given by

m5
Rimage

Rtarget
. ~7!

ThusAtarget can then be written as

Atarget5Aimage

Rtarget
2

Rimage
2

. ~8!

Rewriting the Gaussian lens formula,

1

Rtarget
1

1

Rimage
5

1

f
, ~9!

in terms ofm andRimage, wheref is the focal length of the
optical system, we get

Rimage5 f ~m11!. ~10!

Fig. 2 Imaging system at a distance Rtarget from the target with the
focal plane at a distance Rimage from the camera optics.
575Optical Engineering, Vol. 40 No. 4, April 2001
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Fiete and Tantalo: Comparison of SNR image quality . . .
Using Eq.~8! and Eq.~10!, and multiplying by the trans-
mittance of the optics,toptics, the radiant flux reaching the
image plane is

F image5
AimageAaperture

f 2~m11!2 E
lmin

lmax
L target~l!toptics~l! dl. ~11!

If the size of the target is large compared to the grou
instantaneous field of view~GIFOV!, then the target is an
extended source andAimage@Adetector, as shown in Fig. 2,
whereAdetector is the area of the detector. The radiant flu
on the detector for an extended source is

Fdetector5
Adetector

Aimage
F image

5
AdetectorAaperture

f 2~m11!2 E
lmin

lmax
L target~l!toptics~l! dl. ~12!

For remote sensing cameras,Rtarget@Rimage; therefore
m11'1 andf 'Rimage. If the remote sensing camera us
a telescope design of the general kind sketched in Fig
such as a Ritchey Chretien or a Cassegrain, then the rad
flux on the detector can be written as

Fdetector5
Adetectorp~Dap

2 2Dobs
2 !

4 f 2 E
lmin

lmax
L target~l!

3toptics~l! dl, ~13!

or

Fdetector5
Adetectorp~12e!

4~ f# !2 E
lmin

lmax
L target~l!toptics~l! dl,

~14!

whereDap is the diameter of the optical aperture,Dobs is
the diameter of the central obscuration,e is the fraction of
the optical aperture area obscured, and f# is the system f
number given by

f#5
f

Dap
. ~15!

The number of photons reaching the detector is

Fig. 3 Telescope design with a primary and a secondary mirror.
576 Optical Engineering, Vol. 40 No. 4, April 2001
,
t

ndetector5
Adetectorp~12e!

4~ f# !2 E
lmin

lmaxS l

hc
t intDL target~l!

3toptics~l! dl ~photons!, ~16!

where t int is the integration time of the imaging system
Finally, the signal from the target, measured in electro
generated at the detector, is

starget5
Adetectorp~12e!t int

4~ f# !2hc
E

lmin

lmax
h~l!L target~l!

3toptics~l!l dl ~electrons!, ~17!

where h is the quantum efficiency, which is the avera
number of photoelectrons generated per incident photo

1.2 Noise

Although the list of all noise sources in a digital remo
sensing system is long,3 only the major contributors will be
discussed here.

Random noise arises from elements that add uncerta
to the signal level of the target and is quantified by t
standard deviation of its statistical distribution. If the noi
contributors are independent and each follows a normal
tribution, then the variance of the total noise is the sum
the variances of all the noise contributors.4 For N indepen-
dent noise contributors, the standard deviation of the to
noise is

snoise5S (
n51

N

sn
2D 1/2

. ~18!

For images with large signal, the primary noise contrib
tor is the photon noise, which arises from the random fl
tuations in the arrival rate of photons. The photon no
follows a Poisson distribution4; therefore, the variance o
the photon noise equals the expected signal levels, so that

sphoton5As. ~19!

Whens.10, the Poisson distribution approximates a n
mal distribution.

The radiance from the target is not the only light th
reaches the detector. Scattered radiance from the a
sphere, as well as any stray light within the camera, w
produce a background signal superimposed on the ta
signal at the detector. The background contribution adds
additional photon noise factor to the noise term; thus
photon noise, measured in electrons, is

sphoton5~sphoton target
2 1sphoton background

2 !1/2

5~starget1sbackground!
1/2. ~20!

As with the calculation ofL target, calculating the atmo-
spheric contribution to the signal is a complicat
process.1,2 Therefore, radiometry models, such
MODTRAN, are generally used to calculate the bac
ground radiance component ofsbackground.
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Fiete and Tantalo: Comparison of SNR image quality . . .
When no light is incident on the CCD detector, electro
may still be generated due to the dark noise,sdark. Al-
though many factors contribute to the dark noise,3 the prin-
cipal contributor tosdark at nominal operating integratio
times of less than 1 s is the CCDread noise, caused b
variations in the detector voltage. The value ofsdark for a
digital sensor is usually obtained from test measurement
the detector at a given temperature.

The analog-to-digital~A/D! converter quantizes the sig
nal when it is converted to digital counts. This produces
uncertainty in the target signal, because a range of ta
signals can produce the same digital count value. The s
dard deviation of a uniform distribution is 1/A12; therefore,
if the total number of electrons that can be stored at e
detector, Nwell depth, is divided into NDR digital counts,
whereNDR is the dynamic range in digital counts, then t
quantization noise is

squantization5
Nwell depth

NDRA12
5

QSE

A12
, ~21!

where QSE is the quantum step equivalence, in electr
per count.

Combining Eq.~19! and Eq.~21! with the dark noise,
the system noise can be written as

snoise5Astarget1sbackground1squantization
2 1sdark

2

~electrons!. ~22!

2 SNR Image Quality Metrics

Many different metrics have surfaced in the remote sens
community over the years to define the SNR. In their ba
form, all of the metrics ratio a signal level to a noise lev
i.e.,

SNR[
signal

noise
, ~23!

but differences arise in what is consideredsignal and what
is considerednoise. Most SNR metrics compare the mea
target signal with the standard deviation of the noise,
that

SNR5
mean target signal

signal deviation
5

starget

snoise
. ~24!

This SNR calculation for a remote sensing system des
would be straightforward except for the calculation of t
target spectral radiance,L target~l!. The target spectral radi
ance is dependent on the imaging collection paramet
i.e., the solar angle, the atmospheric conditions, and
viewing geometry of the remote sensing system, as we
the target reflectancer target~l!.

Assuming that ‘‘typical’’ imaging collection parameter
will be used to calculate the SNR, the most common d
ference between SNR metrics is the value used
r target~l!. A common assumption is to use the signal from
100%-reflectance target, given by
f

t
-

s

,

SNRr5100%5
starget

snoise
U

r target5100%

, ~25!

where the vertical line means ‘‘evaluated at.’’ This metr
is not very realistic for remote sensing purposes, so val
closer to the average reflectance of the earth are used
stead. For land surfaces, the average reflectance of the
betweenlmin50.4mm andlmax50.9mm is approximately
15%, but will vary depending on the terrain type, such
soil and vegetation, as well as the season.

Two targets cannot be distinguished from one anothe
the image if the difference between their reflectance val
is below the signal differences caused by the noise. I
therefore beneficial to define the signal in terms of the d
ference of the reflectance between two targets~or a target
and its background!,

Dr5rhigh2r low . ~26!

The SNR metric for the reflectance difference between
two targets is

SNRDr5
stargetur target5rhigh

2stargetur target5r low

snoise

5
stargetur target5Dr

snoise
. ~27!

This SNR metric is used often in the remote sensing co
munity, but the value of SNRDr is dependent on the value
chosen forrhigh and r low . The value forrhigh is typically
used to calculate the photon noise insnoise.

Another metric commonly used is the noise-equivale
change in reflectance, or NEDr, which represents the dif
ference in reflectance between two targets that is equiva
to the standard deviation of the noise. It will be difficult,
differentiate two targets that have reflectance differen
less than the NEDr, due to the noise. The NEDr can be
calculated by solving SNRDr for Dr. If Dr is independent
of l, then the NEDr is simply

NEDr5
1

SNRDr /Dr
5

Dr

SNRDr
5

snoise

stargetur target5100%
. ~28!

2.1 Noise Gain

Images are usually enhanced using digital ima
processing algorithms to improve their interpretability. Pr
cessing techniques used to sharpen edges and enhanc
details in an image will also amplify the standard deviati
of the noise,snoise. The SNR metric can allow for the nois
amplification by multiplying the noise term by the nois
gain G; hence the SNR with the noise gain is given by

SNRwith noise gain5
1

G
SNR. ~29!

For a sharpening filterh(x,y) that is M3N pixels in size,
the noise gain is calculated by
577Optical Engineering, Vol. 40 No. 4, April 2001
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Fiete and Tantalo: Comparison of SNR image quality . . .
G5
$(x51

M (y51
N @h~x,y!#2%1/2

(x51
M (y51

N h~x,y!
. ~30!

Image-processing filters will also correlate the noise, wh
can significantly affect the interpretability of the imag
Scaling the SNR by the noise gainG takes account of the
amplification of the noise, but not of the effect that t
correlation may have on the interpretability of the imag

2.2 Frequency-Based SNR Metrics

The SNR metrics defined above assume that the sign
returned from a large uniform target that produces one
diance value, and therefore no information relating to
signal as a function of spatial frequencies is incorporat
The optical transfer function~OTF! of an imaging system
generally decreases to zero as the spatial frequency
creases. Thus, the contrast of the higher spatial frequen
will be reduced more than that of the lower spatial frequ
cies, and the higher spatial frequencies, i.e., the higher
tail, may not be perceptible in the noise. The SNR a
function of the spatial frequenciesu and v can be calcu-
lated by

SNRspectral~u,v !5
uF~u,v ! OTF~u,v !u

^uN~u,v !u2&1/2
, ~31!

whereF(u,v) is the target spectrum,N(u,v) is the noise
spectrum,u u denotes the modulus, and^ & denotes the av-
erage.

A simplification of the spectral SNR metric can be ma
if the noise is uncorrelated, i.e., white, and the OTF is a r
function. This metric simply weights the spectral SNR a
can be calculated by multiplying the SNR by the norm
ized target spectrum and the modulus of the OTF, i.e.,
modulation transfer function~MTF! to give

SNRspectral~white noise)~u,v !5SNR
uF~u,v !u
uF~0,0!u

MTF~u,v !.

~32!

This SNR metric is generally not practical for designi
remote sensing systems, because it is dependent on th
get spectrum and produces a functional form of the SN

A further simplification can be made to Eq.~32! by as-
suming that the target spectrum is uniform, so th
F(u,v)5F(0,0). The spectral SNR can then be reduced
a single numerical value by calculating the spectral SNR
the highest spatial frequency that can be captured by
digital detector. In other words, this SNR metric multipli
the SNR by the value of the system MTF~which is the
modulus of the OTF! at the Nyquist frequencies,5 defined
by

uN[
1

2px
~33!

and

vN[
1

2py
, ~34!
578 Optical Engineering, Vol. 40 No. 4, April 2001
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wherepx andpy are the detector sampling pitches in thex
andy directions, respectively. This SNR metric is given b

SNRNyquist5SNR3MTF~uN ,vN!. ~35!

This metric assumes that the MTF at the Nyquist freque
is nonzero, which is not true for systems whereuN or vN is
equal to or higher than the optical passband cutoff f
quency, i.e.,l(f#)/p>2. If l(f#)/p>2, then the MTF at
the Nyquist frequency is zero,6 as shown in Fig. 4, and the
value of SNRMTF is always zero, even if the SNR is larg
and the image quality is very good.

2.3 Image-Based SNR Metrics

Some SNR metrics use calculations made from the im
data that are collected or simulated. For example, the im
scene variability can be compared with the noise variabi
in the scene by dividing the standard deviation of the ima
gray-level count values by the standard deviation of
noise in counts, i.e.,

SNRscene5
s image~counts!

snoise~counts!
. ~36!

This metric can be useful for testing the performance
algorithms, such as bandwidth compression~BWC!, where
the scene variance can influence the performance of
algorithm.

Another image-based metric uses the difference betw
the average count value from a high-reflectance target
the average count value from a low-reflectance target
the signal. The noise is the average of the standard de
tion of the counts from the two targets. This SNR is giv
by

SNRscene~high-low)5
^counts&high-r target2^counts& low-r target

~shigh-r target1s low-r target!/2
.

~37!

This metric assumes that any variability in the count valu
within the target is due to noise; therefore, large unifo
areas of known reflectance values must be present in
image. To improve this measurement, large diffuse refl

Fig. 4 The system MTF for an incoherent diffraction-limited Ritchey
Chretien optical system with a circular aperture and a 10% circular
central obscuration for different l(f#)/p values.
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Fiete and Tantalo: Comparison of SNR image quality . . .
tance panels can be deployed on the ground, with typ
values forrhigh andr low being 90% and 10%, respectivel
Great care must be taken to assure that any variabilit
the surface reflectance of the panels is well below the
tectable limit of the system.

Although image-based SNR metrics are useful in de
mining the performance of an operational remote sens
system, they are generally not practical for the design
such systems. To accurately compare the performanc
different systems, a standard set of images would nee
be defined and acquired for all systems. Image-proces
enhancements, such as contrast enhancements or
sharpening filters, can significantly change the SNR va
calculated. Furthermore, sharpening filters can add ed
ringing effects to the image, which can propagate into
uniform areas needed for this calculation. This paper w
focus on SNR metrics fundamental to the design and an
sis of remote sensing systems.

3 Image Simulations

In order to understand the image quality of remote-sens
imaging satellite designs in terms of the different SNR m
rics, an imaging system was modeled and images with
ferent signal levels were simulated.

The design of the Kodak Space Remote Sensing C
era, Model 1000, was modeled for this analysis. The ca
era is a Ritchey Chretien telescope with a linear CCD
tector array. Table 1 lists the optics and detector des
parameters as well as the imaging conditions used for
simulations. The Model 1000 camera also contains f
multispectral bands, but the focus of this analysis will be

Table 1 Optics and detector parameters of the Kodak Model 1000
space remote sensing camera.

Optics aperture diameter Dap 44.84 cm

Fraction of aperture area obscured, e 0.06

Focal length f 800 cm

f# 17.84

WFE 0.13l (at l50.6328 mm)

Spectral bandpass, lmax2lmin 0.4 to 0.9 mm

Transmission topt 0.90

Detector size, Adetector 12 mm312 mm

l f#/p 1.0

Number of TDI stages, NTDI 10, 13, 18, 24, or 32

Line rate 6900 lines/s

Average QE h 0.65

Dynamic range 11 bits (1800 counts)

Well depth Nwell depth 153 000 electrons

QSE 85 electrons per count

Dark noise sdark 70 electrons at 20°C

Number of cross-track detectors 13 816

Altitude 680 km

Look angle 0 deg (nadir)

Sun angle 60 deg

Atmosphere Mid-lat., summer,
19-km visibility

GSD 1 m
l

-

f

g
e-

-

-

-

the panchromatic image quality. The camera is designed
a 680-km circular orbit, resulting in a 1-m ground samp
distance~GSD!.

The detector array is a linear array with time delay a
integration ~TDI! stages. The TDI process uses multip
detectors in the along-scan direction to collect multiple im
ages of the same ground area as the image moves acros
detectors. The multiple images are combined in the dete
to improve the effective integration time and SNR. Th
effective integration time is given by

t int5
NTDI

line rate
, ~38!

where the line rate is the number of lines of image da
collected per second in the along-scan direction, andNTDI
is the number of TDI stages. For the imaging conditio
listed in Table 1, the Model 1000 camera would use 10 T
stages, which gives an effective integration time of 1.
ms.

The scenes used for the image simulations are panc
matic aerial images collected on high-resolution film with
resolution less than 0.2 m. The images were digitized to
11-bit dynamic range and a 0.2-m sampling distance. F
ure 5 shows the processing steps used to generate the
fidelity image simulations. MODTRAN 3.5 was used t
calculate the radiance terms instarget andsbackground, and a
15% target reflectance value was used to calcul
sbackground. The signal level of the image simulations wa
changed by varying the integration time of the Model 10
camera. The image smear was held constant, and the
was changed as necessary to avoid image saturation a
longer integration times. Noise was added to the ima
using a Gaussian random number generator having a s
dard deviation equal tosnoise.

Figure 6 shows a subsection of the image simulatio
magnified 23 for effective integration times of 10, 5, 1.45
0.5, 0.1, 0.05, 0.02, and 0.01 ms. Figure 7 shows a sub
tion of the image simulations magnified 43 for effective
integration times of 1.45, 0.5, 0.1, and 0.05 ms, to show
subtle changes in the image quality between these ima
Each image simulation was processed with edg
sharpening filters to enhance the detail in the image. T
optimal edge-sharpening filter for each image was de

Fig. 5 Image simulation process used for the Kodak space remote
sensing camera, Model 1000.
579Optical Engineering, Vol. 40 No. 4, April 2001
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580 Optical Engi
Fig. 6 Image simulations of the Kodak Space Remote Sensing Camera, Model 1000, magnified 23
for effective integration times of (a) 10 ms, (b) 5 ms, (c) 1.45 ms, (d) 0.5 ms, (e) 0.1 ms, (f) 0.05 ms,
(g) 0.02 ms, and (h) 0.01 ms.
neering, Vol. 40 No. 4, April 2001
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Fig. 7 Image simulations of the Kodak Space Remote Sensing Camera, Model 1000, magnified 43
for effective integration times of (a) 1.45 ms, (b) 0.5 ms, (c) 0.1 ms, (d) 0.05 ms.
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mined by processing each image with a series of filters w
varying gains and visually inspecting the image to det
mine the best filter. This filter maximized the visual inte
pretability of the image, i.e., a filter with a lower ga
would render the image too blurry, while a filter with
higher gain would reduce the interpretability due to no
amplification and correlation or to unacceptable edge ri
ing. The white-noise gain of the filters selected for the i
age simulations in this study ranged between 1.0 and
Finally, after edge sharpening, contrast and tonal enha
ments were applied to all of the images to optimize
quality.

4 SNR and Image Interpretability

The SNR metrics calculated for each image simulat
need to be related to a measure that quantifies the e
that the noise has on a user’s ability to interpret the inf
mation in the image.

The National Imagery Interpretability Rating Sca
~NIIRS!7 is a 0-to-9 scale that quantifies the interpretabil
of an image and was initially developed for the reconna
sance community. The scale is an important tool for de
ing imaging requirements. If more information can be e
tracted from the image, then the NIIRS rating will increa
Table 2 gives examples of exploitation tasks from the
vilian NIIRS that can be accomplished at different NIIR
.
-

t

levels for visible images. Separate military NIIRS sca
have been developed for visible, infrared, radar, and mu
spectral sensor systems, because the exploitation task
each sensor type can be very different.

Although NIIRS is defined as an integer scale,DNIIRS
ratings at fractional NIIRS are performed to measure sm
differences in image quality between two images.
DNIIRS that is less than 0.1 NIIRS is usually not visual
perceptible and does not affect the interpretability of t
image, whereas aDNIIRS above 0.2 NIIRS is easily per
ceptible. The NIIRS scale is designed so that theDNIIRS
ratings are independent of the NIIRS rating of the ima
e.g., a degradation that produces a 0.2 NIIRS loss in im
quality on a NIIRS 6 image will also produce a 0.2 NIIR
loss on a NIIRS 4 image.

The general image quality equation~GIQE! was devel-
oped as a tool to predict the NIIRS rating of an image giv
the imaging system design and collection parameters.8 The
GIQE for visible EO systems is

NIIRS510.2512a log10GSDGM1b log10RERGM

20.656HGM20.344
G

SNR
, ~39!

where GSDGM is the geometric mean GSD, RERGM is the
581Optical Engineering, Vol. 40 No. 4, April 2001
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582 Optical Engi
Table 2 Example exploitation tasks that can be accomplished at different NIIRS levels from the
civilian visible-light NIIRS.

NIIRS
rating
level Exploitation tasks

0 Interpretability of the imagery is precluded by obscuration, degradation,
or very poor resolution.

1 Distinguish between major land use classes (urban, forest, water, etc.).
Distinguish between runways and taxiways at a large airfield.

2 Detect large buildings (e.g., hospitals, factories).
Identify road patterns, like cloverleafs, on major highway systems.

3 Detect individual houses in residential neighborhoods.
Distinguish between natural forest stands and orchards.

4 Detect basketball court, tennis court, volleyball court in urban areas.
Identify farm buildings as barns, silos, or residences.

5 Identify tents (larger than two person) at established recreational camping areas.
Detect large animals (e.g., elephants, rhinoceros) in grasslands.

6 Identify automobiles as sedans or station wagons.
Identify individual telephone/electric poles in residential neighborhoods.

7 Detect individual steps on a stairway.
Identify individual railroad ties.

8 Count individual baby pigs.
Identify windshield wipers on a vehicle.

9 Identify individual barbs on a barbed wire fence.
Detect individual spikes in railroad ties.
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geometric mean of the normalized relative edge respo
~RER!, HGM is the geometric mean height oversho
caused by the edge sharpening,G is the noise gain from the
edge sharpening, and SNR is the signal-to-noise ratio.
coefficient a equals 3.32 andb equals 1.559 if RERGM

>0.9, anda equals 3.16 andb equals 2.817 if RERGM
, 0.9.

The SNR term of the GIQE is calculated using SNRDr

in Eq. ~27! for rhigh515% andr low57%; thus

SNRGIQE5
stargetur target5Dr58%

snoise
. ~40!

The GIQE can be used to predict the change in the im
interpretability of each image as the SNR changes. Us
the GIQE to predict theDNIIRS between two images with
different SNRs requires determining the optimal edg
sharpening filter to apply to each image, because the sh
ening filter will influence RERGM , HGM , andG. The image
analyst will increase or decrease the strength of the ed
sharpening filter until the interpretability of the image
optimized. If the edge-sharpening filter is not changed, t
the predicted change in NIIRS between two different SN
is

DNIIRS50.344GS 1

SNR1
2

1

SNR2
D . ~41!

In order to better understand the relationship betw
the various SNR values calculated and image interpreta
ity, a limited DNIIRS evaluation was conducted by com
paring each of the simulated images with the image sim
lation with the 10-ms~high-SNR! effective integration
neering, Vol. 40 No. 4, April 2001
e

-

-

-

time. A total of 66 images were used in the evaluation. T
images were rated by four image scientists experien
with DNIIRS evaluations. All ratings were performed via
softcopy flicker comparison on a calibrated high-resolut
softcopy monitor. Each image scientist was allowed
roam and magnify the images while they were being rat
The experiment was designed so that the presentation o
of all comparisons was randomized for each observer.

5 Results and Conclusions

Tables 3–5 list various SNR metrics for each of the ima
simulations produced. Table 3 lists the SNR metrics cal
lated without incorporating the system MTF or the noi
gain from the enhancement processing. Table 4 incor
rates the noise gain, and Table 5 incorporates the sys
MTF value at Nyquist, both of which reduce the calculat
SNR compared to Table 3. Note that the SNR values v
greatly for the same image depending on the SNR me
used. The Model 1000 camera, at an effective integra
time of 1.45 ms and at the collection parameters listed
Table 1, can have an SNR value ranging between 3
291, depending on the metric used, even though they
represent the same image quality.

Relating the image quality of a system design to NIIR
as a function of SNR is desirable if image interpretability
the driving factor. The averageDNIIRS rating for each im-
age simulation is shown in Tables 3–5, along with the 95
confidence interval. Standard statistical analysis was p
formed on the ratings, including an ANOVA analysis
test for outliers~none were found!. Figure 8 shows a linea
fit between theDNIIRS ratings and the NEDr values from
Table 3, with the linear relationship given by

DNIIRS52~0.1760.02!NEDr~%!. ~42!
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Table 3 Various SNR metrics for each image simulation.

Image # 1 2 3 4 5 6 7 8

tint (ms) 10 5 1.45 0.5 0.1 0.05 0.02 0.01

DNIIRS ratings 0.060.0 0.060.0 0.060.0 0.060.0 20.260.1 20.460.1 21.160.2 21.860.2

DNIIRS GIQE 20.01 20.02 20.04 20.08 20.29 20.94 21.3 21.5

SNRr5100% 782 551 291 164 59 35 16 9

SNRr515% 240 167 84 43 12 6 3 1

SNRDrrhigh590% r low510% 656 462 244 137 49 29 13 7

SNRDrrhigh526% r low510% 215 151 77 40 12 7 3 1

SNRDrrhigh515% r low57% 128 89 45 23 6 3 1 1

NEDr target515% 0.06 0.09 0.18 0.35 1.26 2.36 5.64 11.1

Table 4 Various SNR metrics for each image simulation divided by the noise gain.

Image # 1 2 3 4 5 6 7 8

tint (ms) 10 5 1.45 0.5 0.1 0.05 0.02 0.01

DNIIRS ratings 0.060.0 0.060.0 0.060.0 0.060.02 20.260.1 20.460.1 21.160.2 21.860.2

DNIIRS GIQE 20.01 20.02 20.04 20.08 20.29 20.94 21.3 21.5

SNRr5100% 143 101 53 30 16 10 16 5

SNRr515% 44 31 15 8 3 2 3 1

SNRDrrhigh590% r low510% 120 85 45 25 13 8 13 4

SNRDrrhigh526% r low510% 39 28 14 7 3 2 3 1

SNRDrrhigh515% r low57% 23 16 8 4 2 1 1 0

NEDr target515% 0.34 0.49 0.98 1.92 4.60 8.64 5.64 21.1

Table 5 Various SNR metrics for each image simulation multiplied by the MTF at Nyquist.

Image # 1 2 3 4 5 6 7 8

tint (ms) 10 5 1.45 0.5 0.1 0.05 0.02 0.01

DNIIRS ratings 0.060.0 0.060.0 0.060.0 0.060.02 20.260.1 20.460.1 21.160.2 21.860.2

DNIIRS GIQE 20.01 20.02 20.04 20.08 20.29 20.94 21.3 21.5

SNRr5100% 48 34 18 10 4 2 1 1

SNRr515% 15 10 5 3 1 0 0 0

SNRDrrhigh590% r low510% 41 29 15 8 3 2 1 0

SNRDrrhigh526% r low510% 13 9 5 3 1 0 0 0

SNRDrrhigh515% r low57% 8 6 3 1 0 0 0 0

NEDr target515% 1.01 1.45 2.88 5.68 20.3 38.1 91.0 180
583Optical Engineering, Vol. 40 No. 4, April 2001
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This suggests that the relationship betweenDNIIRS and
SNRDr for the Model 1000 remote sensing camera is si
ply a linear relationship with the reciprocal of SNRDr . The
GIQE DNIIRS predictions, shown in Tables 3–5, are st
tistically different from theDNIIRS ratings greater than
20.2, and they do not fit a linear model. It should be not
that the image scientists commented that the images w
NEDr.5% from Table 3 were difficult to rate.

Table 6 shows the values of the various SNR metr
that produce a predictedDNIIRS of –0.1 using the relation-
ship in Eq.~42!. Images will suffer a loss in NIIRS from
the noise if the predicted SNR values for a remote sens
system design are not greater that the values shown
Table 6, except for the NEDr, which needs to be less tha
those shown in Table 6. The 95% confidence interval
the values in Table 6 is612%. It should be noted that th
GIQE predicts aDNIIRS of –0.14 for the SNR values
shown in Table 6.

Predicting the NIIRS rating for different system desig
at various SNRs is difficult because the interaction betwe
the image interpretability and the noise, the MTF, and
enhancement processing is difficult to model. This is es
cially true when comparing system design concepts t
change the MTF. For example, if thel(f#)/p increases in a
system design while the SNR is held constant, then a st
ger edge enhancement will be required to enhance the e
sharpness, but this will increase the noise gain that ma

Fig. 8 Linear fit between the DNIIRS ratings and the NEDr values
from Table 3.

Table 6 Values for the various SNR metrics that produce a DNIIRS
of 20.1 using the evaluation results.

SNR metric Value
Divided by the

noise gain
Multiplied by the
MTF at Nyquist

SNRr5100% 109 20 6.7

SNRr515% 25 4.7 1.6

SNRDr :
rhigh590%, r low510% 90 17 5.6

rhigh526%, r low510% 25 4.6 1.5

rhigh515%, r low57% 14 2.5 0.8

NEDr (%):
r target515%

0.59 3.2 9.5
584 Optical Engineering, Vol. 40 No. 4, April 2001
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the image appear noisier. A similar difficulty at predictin
the NIIRS is seen with sparse aperture systems, which
quire stronger edge enhancement processing, therefor
creasing the noise gain. High-fidelity image simulations c
be produced for system designs at various SNRs in orde
determine an acceptable SNR to build the system at,
image evaluations will still need to be conducted to rel
them to NIIRS.

The SNR values calculated in Tables 3–5 and Tabl
can be used as a reference to help understand how
SNR metric relates to image quality by comparing the v
ues with the image simulations and theDNIIRS ratings.
This reference should be accurate for variations to the
aging conditions used in this study, but will be less accur
for system designs that deviate considerably from
model 1000 remote sensing camera design used in
analysis. It is always important for the designers of rem
sensing systems to clearly state the SNR metric that is
ing used when quoting an SNR value for the system an
understand the relationship of the SNR value to ima
quality.
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