Comparison of SNR image quality metrics
for remote sensing systems

Robert D. Fiete, MEMBER SPIE Abstract. Different definitions of the signal-to-noise ratio (SNR) are be-
Theodore Tantalo ing used as metrics to describe the image quality of remote sensing
Eastman Kodak Company systems. It is usually not clear which SNR definition is being used and
Commercial and Government Systems what the image quality of the system is when an SNR value is quoted.
1447 St. Paul Street This paper looks at several SNR metrics used in the remote sensing
Rochester, NY 14653-7225 community. Image simulations of the Kodak Space Remote Sensing
E-mail: robert.fiete@kodak.com Camera, Model 1000, were produced at different signal levels to give

insight into the image quality that corresponds with the different SNR
metric values. The change in image quality of each simulation at different
signal levels is also quantified using the National Imagery Interpretability
Rating Scale (NIIRS) and related to the SNR metrics to better under-
stand the relationship between the metric and image interpretability. An
analysis shows that the loss in image interpretability, measured as ANI-
IRS, can be modeled as a linear relationship with the noise-equivalent
change in reflection (NEAp). This relationship is used to predict the val-
ues that the various SNR metrics must exceed to prevent a loss in the
interpretability of the image from the noise. © 2001 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.1355251]

Subject terms: image quality; remote sensing; satellites; digital imaging; imaging
systems.

Paper 200024 received Jan. 19, 2000; revised manuscript received July 24,
2000; accepted for publication Oct. 24, 2000.

1 Introduction exact one-to-one relationship between the digital count
The signal-to-noise rati(SNR) is a common metric used to value and the actual target radiance does not exist, because

communicate the image quality and radiometric perfor- the count value also contains signal terms from other

mance of a remote sensing imaging system. Much confu- SOUrces, i-e., thaoise.Although the signal in the final im-
sion has arisen, however, as to the definition that one is @9€ iS represented in digital counts, the signal for remote

using when discussing SNR performance. When a camer sensing system designs is generally calculated as the num-
designer specifies an SNR value, it is not always clear how PE Of photoelectrons produced by the remote sensing sat-
that value was calculated and how it relates to the image ellite’s detector. The mathematical derivation of the ex-

quality of the system. For example, if an SNR of 30 is Pected signal from the targeSyqe, calculated as the
quoted for a system design, it is not clear if the image Number of photoelectrons produced by the remote sensing

quality is good or bad. It is also possible to quote a high satellite’s detector,_from a target on the ground follows_.
SNR value and a low SNR value for the same system de- The spectral radiant exitance of a blackbody, for a given
sign and imaging conditions if different SNR metrics are Wavelength of lights, is given by Planck’s equatios

used, even though the image quality is the same. This study

looks at several SNR metrics used in the remote sensing 2hc2 1

community and shows their relationship to image quality Mgg(\,T)=

and image interpretability using high fidelity image simu- A5 exphc/AkT) -1
lations. The first step in defining SNR metrics is to review

the derivation of the signal and noise terms for remote sens-ywhere T is the temperature of the source in kelviris,

(WimPum), (1)

Ing systems. =6.63x10 % J s,c=3x10° m/s, andk=1.38x10 =
) JIK. For a Lambertian surface, the spectral radiance from a
1.1 Signal blackbody is given by
For this analysis, it will be assumed that the remote sensing
system consists of a camera with a digital focal plane array Mgg(\,T)
that acquires images in the visible spectrum. Figure 1 Lgg(\)= T (W/m? um sp. 2

shows the process by which the final count value in the

digital image is derived from the spectral radiance of a

ground target illuminated by the sun. The digital count If the exitance from the sun is approximated by that of a
value of each target pixel in the final image is related to the blackbody, then the solar spectral irradiance on a target on
signal produced by the target radiance. Unfortunately, anthe ground can be approximated as
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Fig. 2 Imaging system at a distance Riyqe; from the target with the
l spectral radiance focal plane at a distance Ry from the camera optics.
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spectral radiance ,qe:is @ combination of the solar irradi-
l radiant flux ance that is reflected from the ground target and the black-
body radiance from the target. This analysis will focus on

remote sensing in the visible imaging spectrum only, so it
detector will be assumed that the term containibgg(\, Targe) iS
negligible compared to the solar irradiance term.
l electrons Figure 2 illustrates an imaging system at a distance
Riarget from the target with the focal plane at a distance
Rimage from the camera optics. For a polychromatic remote
A/D sensing camera where the aperture is small compared to the
focal lengthf, the radiant flux within the spectral passband
l counts {:&Ching the entrance aperture of the camera from the target
digital image A Nmax
q)aperture: mef Ltarge()\) dx
target N min

Fig. 1 The process by which the final count value in the digital

image is derived from the spectral radiance of a ground target illu- N max
minated by the sun. =Atarge9 N Ltarge£)\)d)\ (W), 6)
min

whereh i, and\ o define the spectral passbamdy e is

z the area of the targef\,peureiS the area of the camera

Erargel M) ~Mag(\, Tsu) 55— o ¥N) aperture, and) is the solid angle encompassing the aper-
earth-sun ture area. The area of the imag&yage, is given by
X COY b enith) (W/m2 um), 3
Aimage: mzAtarget’ (6)

wherer g, is the radius of the sum,gain-suniS the distance

from the earth to the sunin'®is the atmospheric trans- wherem is the magnification given by

mittance along the path from the sun to the targgt,,i, is

the solar zenith angle, ant,, is approximately 5900 K. _ Rimage )
The spectral radiance from a Lambertian target at the Riarget

entrance aperture of the remote sensing satelftté is

Thus AigerCan then be written as

Riavget
arge
Atarget:Aimage > - (8)
+ Etarge()\) LBB()\aTtargeg] (4) image
Rewriting the Gaussian lens formula,
where 7529 s the atmospheric transmittance along the
path from the target to the satellitgggeis the reflectance 1 N 1 1 ©
of the target, e;qer is the emissivity of the target, and  Riyget Rimage '
Eskyiight IS the irradiance on the target due to the skylight
from atmospheric scattering. Radiometry models, such asin terms ofm andRjy,4e, Wheref is the focal length of the
MODTRAN, are generally used to calculdig,.because  optical system, we get
the radiometric calculations are dependent on the acquisi-
tion geometry and can be complicaﬂe”dNote that the Rimage= f(m+1). (10

. Prargef \)
Ltarge()\) = Tg:g Sab\)[ % [ Etargep\) + Eskylight()\)]
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Fig. 3 Telescope design with a primary and a secondary mirror.
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Using Eg.(8) and Eq.(10), and multiplying by the trans-
mittance of the opticsryyics, the radiant flux reaching the
image plane is

o Aimagéo‘aperturef Mmax

image— 11
image fz(m+1)2 )\min ( )

Ltarge( \) Toptics( N) d\.

If the size of the target is large compared to the ground

instantaneous field of vieWGIFOV), then the target is an
extended source andinage>Agetector @S Shown in Fig. 2,

where AgetectoriS the area of the detector. The radiant flux

on the detector for an extended source is

o _ Adetectorq)
detector A image
image

AdetectoAapertureiI Mmax
=507 aperl L aref N) Topicd N) AN, (12)
f2(m+ 1)2 A targe{ optlcs(

For remote sensing cameraBy gt Rimage: therefore

Adt tﬂT(l_f) Amax[ A
ndetector:ee;(oT)zf Rtim L targef )

X 7'optici N) dh

Nmin

(photons, (16)
wheret;, is the integration time of the imaging system.
Finally, the signal from the target, measured in electrons
generated at the detector, is

Agetectom(1— f)tintf}‘max
AL A
4G gy T bl

X TOp'[iCS( N ) N dh

Starget™

17

where 7 is the quantum efficiency, which is the average
number of photoelectrons generated per incident photon.

(electrons,

1.2 Noise

Although the list of all noise sources in a digital remote
sensing system is lontpnly the major contributors will be
discussed here.

Random noise arises from elements that add uncertainty
to the signal level of the target and is quantified by the
standard deviation of its statistical distribution. If the noise
contributors are independent and each follows a normal dis-
tribution, then the variance of the total noise is the sum of
the variances of all the noise contribut6rBor N indepen-
dent noise contributors, the standard deviation of the total
noise is

(18)

N 1/2
s | > o4
O noise— A On .
n

For images with large signal, the primary noise contribu-

m+1~1 andf~Rinage. If the remote sensing camera uses tor js the photon noise, which arises from the random fluc-
a telescope design of the general kind sketched in Fig. 3,tyations in the arrival rate of photons. The photon noise
such as a Ritchey Chretien or a Cassegrain, then the radianfo|lows a Poisson distributién therefore, the variance of

flux on the detector can be written as

Adetectof( Dgp_ ngs) Mmax
D getector f LtargefN)
etector 452 - arge
X Topticd N) A\, (13
or
Adetectof(1— €) (Mmax
D getect :—f Ltargef ) Topticd N ) N,
etector 4(f#)2 - arge optic
(14

where D, is the diameter of the optical apertuf@ s is

the diameter of the central obscuratiens the fraction of
the optical aperture area obscured, a#idsfthe system f
number given by

f
(15

The number of photons reaching the detector is
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the photon noise equals the expected signal Isvsb that

O photon \/g (19
Whens>10, the Poisson distribution approximates a nor-
mal distribution.

The radiance from the target is not the only light that
reaches the detector. Scattered radiance from the atmo-
sphere, as well as any stray light within the camera, will
produce a background signal superimposed on the target
signal at the detector. The background contribution adds an
additional photon noise factor to the noise term; thus the
photon noise, measured in electrons, is

_ 2 2 1/2
O photon— (Uphoton targe_lj— O photon backgrour)i

= (Starget+ Sbackgrouna V2, (20

As with the calculation ofL 4, calculating the atmo-
spheric contribution to the signal is a complicated
process:> Therefore, radiometry models, such as
MODTRAN, are generally used to calculate the back-
ground radiance component §f;ckground
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When no light is incident on the CCD detector, electrons Star
. . get
may still be generated due to the dark noiegg. Al- SNRy—10096= 5 : (25
though many factors contribute to the dark noisee prin- noise
cipal contributor too g, at nominal operating integration ) . ) .
times of less tha 1 s is the CCDread noise, caused by Where the vertical line means “evaluated at.” This metric
variations in the detector voltage. The valueagf,, for a is not very realistic for remote sensing purposes, so values

digital sensor is usually obtained from test measurements ofCl0Ser to the average reflectance of the earth are used in-

the detector at a given temperature. stead. For land surfaces, the average reflectancg of the earth
The analog-to-digitalA/D) converter quantizes the sig- begween?\mir]: 0.4 um and\ ma,=0.9 um is approximately

nal when it is converted to digital counts. This produces an 15%. but will vary depending on the terrain type, such as

uncertainty in the target signal, because a range of targetSOil and vegetation, as well as the season. _

signals can produce the same digital count value. The stan- WO targets cannot be distinguished from one another in

dard deviation of a uniform distribution is {12; therefore the image if the difference between their reflectance values

if the total number of electrons that can be stored at each;zet;glfg\;"e ttf)]:n;?cr?:ll tglf:jeerf?r?g?ﬁecguiztljir?){etrr;r?sn(g‘fﬁé 'Ot“f's
detector, Nyl gepiny 1S divided into Npg digital counts, 9

X . LD ference of the reflectance between two tardetsa target
whereNpg is the dynamic range in digital counts, then the and its background d 9
quantization noise is

Ptargef™ 100%

Ap:phigh_Plow- (26)
_ NweII depth QSE

o i = ——— |
quantization NDR\/l—Z \/1—2

where QSE is the quantum step equivalence, in electrons

per count. SNR, =
Combining Eq.(19) and Eq.(21) with the dark noise, P

the system noise can be written as

(21) The SNR metric for the reflectance difference between the

two targets is

Starge{ Ptargef™ phigh_ Stargelplarget: Plow

O noise

Starg e{ Prargef Ap

27)

_ 2 2
Onoise— \/Starget+ Sbackground™ Uquantization"_ T dark O noise

(electrons. (22) This SNR metric is used often in the remote sensing com-

munity, but the value of SNR, is dependent on the values
chosen forppg, and pjoy, . The value forpyg, is typically

, i , _used to calculate the photon noisedpyse-
Many different metrics have surfaced in the remote sensing  another metric commonly used is the noise-equivalent

community over the years to define the SNR. In their basic change in reflectance, or NIz, which represents the dif-
form, all of the metrics ratio a signal level to a noise level, fgrence in reflectance between two targets that is equivalent

2 SNR Image Quality Metrics

1.e., to the standard deviation of the noise. It will be difficult, to
) differentiate two targets that have reflectance differences
_ signal 23 less than the NEp, due to the noise. The N¥p can be
" noise’ calculated by solving SNR, for Ap. If Ap is independent

. L ) o of \, then the NRp is simply
but differences arise in what is considergdnal and what

is consideredhoise Most SNR metrics compare the mean 1 Ap

. . g . O noise
target signal with the standard deviation of the noise, so NEAp= = = .
that SNRy,/Ap  SNRy,  Stargel Prarger= 100%

(28

SNR- mgan targe.t S?gna:| Starget_
signal deviation o pgise

(29 2.1 Noise Gain

Images are usually enhanced using digital image-
This SNR calculation for a remote sensing system design processing algorithms to improve their interpretability. Pro--
would be straightforward except for the calculation of the C€essing techniques used to sharpen edges and enhance fine
target spectral radianc,ge(N). The target spectral radi- details in an image will also ampl_lfy the standard dewqtlon
ance is dependent on the imaging collection parameters,of the nNoiseoygise. The SNR metric can allow for the noise
i.e., the solar angle, the atmospheric conditions, and the@mplification by multiplying the noise term by the noise
viewing geometry of the remote sensing system, as well as9ain G; hence the SNR with the noise gain is given by
the target reflectancgge(N). 1

Assuming that “typical” imaging collection parameters

will be usetgj;l to caIc)(JFI)ate the SgNF?, the most Eommon dif- >N i noise gai~ g SNR. (29
ference between SNR metrics is the value used for
PrargefN)- A COMmon assumption is to use the signal from a For a sharpening filten(x,y) that is M XN pixels in size,
100%-reflectance target, given by the noise gain is calculated by
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Mi#)/p = 0.5

(=L =0 Th(x,y) 132 30 :
- s hixy) >

Hi#)lp = 1
Image-processing filters will also correlate the noise, which Mi/#)p =2
can significantly affect the interpretability of the image.

Scaling the SNR by the noise gaitakes account of the  MTF |
amplification of the noise, but not of the effect that the 0.4
correlation may have on the interpretability of the image.

scene information aliased

0.21
2.2 Frequency-Based SNR Metrics

The SNR metrics defined above assume that the signal is 0075 s PPEREE—— P uE—
returned from a large uniform target that produces one ra-

diance value, and therefore no information relating to the
signal as a function of spatial frequencies is incorporated. Fig. 4 The system MTF for an incoherent diffraction-limited Ritchey
The optical transfer functiofOTF) of an imaging system  Chretien optical system with a circular aperture and a 10% circular
generally decreases to zero as the spatial frequency in-central obscuration for different A(f#)/p values.

creases. Thus, the contrast of the higher spatial frequencies

will be reduced more than that of the lower spatial frequen-

cies, and the higher spatial frequencies, i.e., the higher de-wherep, andp, are the detector sampling pitches in the
tail, may not be perceptible in the noise. The SNR as a andy directions, respectively. This SNR metric is given by

function of the spatial frequenciasandv can be calcu-
lated by SNI:eNyquist: SNRXMTF(uy,vn)- (39

Cycles/pixel

This metric assumes that the MTF at the Nyquist frequency
|F(u,v) OTHu,v)| . L .
SNRpectrd U,0) = NI (3D is nonzero, which is not true for systems whaggor vy is
(IN(u,v)|?) equal to or higher than the optical passband cutoff fre-
) ) ) quency, i.e.\(f#)/p=2. If \(f#)/p=2, then the MTF at
whereF(u,v) is the target spectruni(u,v) is the noise  the Nyquist frequency is zefoas shown in Fig. 4, and the
spectrum| | denotes the modulus, arid) denotes the av-  value of SNR, is always zero, even if the SNR is large

erage. _ and the image quality is very good.
A simplification of the spectral SNR metric can be made

if the noise is uncorrelated, i.e., white, and the OTF is areal 2.3  jmage-Based SNR Metrics
function. This metric simply weights the spectral SNR and
can be calculated by multiplying the SNR by the normal-
ized target spectrum and the modulus of the OTF, i.e., the
modulation transfer functiofMTF) to give

Some SNR metrics use calculations made from the image
data that are collected or simulated. For example, the image
scene variability can be compared with the noise variability

in the scene by dividing the standard deviation of the image

IF(u,0)] gray-level count values by the standard deviation of the
SNRspectra(lwhite noisefuiv):SNRm MTF(u,v). noise in counts, i.e.,
(32) SNR _ Timagd cOUNS 36
This SNR metric is generally not practical for designing N orpgisd COUNES

remote sensing systems, because it is dependent on the tar-_ _ .

get spectrum and produces a functional form of the SNR. This metric can be useful _for testing the performance of
A further simplification can be made to E2) by as-  &lgorithms, such as bandwidth compressiBWC), where

suming that the target spectrum is uniform, so that the scene variance can influence the performance of the

_ Igorithm.
F(u,v)=F(0,0). The spectral SNR can then be reduced to a . . .
a single numerical value by calculating the spectral SNR at , AAnother image-based metric uses the difference between

the highest spatial frequency that can be captured by theme average countt vallue f][om a h||gh-re]fcllec{ance ttargett ?nd
digital detector. In other words, this SNR metric multiplies ¢ @Verage count vaue irom a low-refectance target for

R the signal. The noise is the average of the standard devia-
the SNR by the value of the system MTW®hich is the . X S
modulus of the OTFat the Nyquist frequenciésdefined tion of the counts from the two targets. This SNR is given

by y
1 SN Rs ) _ <COUI’]t$ high-p target ™ <COUﬂt$ low-p target
UN= E (33 cenéhigh-low) (Uhigh—ptargeﬁ_ Ulow—ptarge9/2
X
(37)
is metric assumes that any variability in the count values
and This met that any variability in th tval
1 within the target is due to noise; therefore, large uniform
UNS o, (34) areas of known reflectance values must be present in the
2py image. To improve this measurement, large diffuse reflec-
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lsglci ie n?g:éczea;]nsciingeézﬁc;rr ;arameters of the Kodak Model 1000 % . . ‘|
8
Optlc§ aperture diameter Dy, 44.84 cm g' |:l optics _»‘ '\m.g:? s |sempiing _>| HDetector — | Noiss
Fraction of aperture area obscured, e  0.06 = esponse _‘
Focal length f 800 cm
f# 17.84 o L Com':::sion —P‘ Transmission (—»| Deoonlzstr:ssion—b Equalization [—
WFE 0.13\ (at A=0.6328 um) £ and EDAC
Spectral bandpass, A max—\min 0.4 t0 0.9 um g
Transmission toy 0.90 i Data
Detector size, Agetector 12 pmx12 pm E Image  |_| Edge Contrast & Output Media
N\ f#/p 1.0 Reconstruction Sharpness Brightness {S/C, film, paper)
Number of TDI stages, NTD| 10, 13, 18, 24, or 32 Dependent on final product
Line rate 6900 lines/s Fig. 5 Image simulation process used for the Kodak space remote
Average QE 7 0.65 sensing camera, Model 1000.
Dynamic range 11 bits (1800 counts)
Well depth Nyeyi geptn 153 000 electrons
QSE 85 electrons per count the panchro_matic image qualit_y. T_he camera is designed for
Dark noise oy 70 electrons at 20°C a 680-km circular orbit, resulting in a 1-m ground sample
Number of cross-track detectors 13816 distance(GSD). . . . .
Altitude 680 km ~ The detector array is a linear array with time delay and
_ integration (TDI) stages. The TDI process uses multiple
Look angle 0 deg (nadir) detectors in the along-scan direction to collect multiple im-
Sun angle 60 deg ages of the same ground area as the image moves across the
Atmosphere Mid-lat., summer, detectors. The multiple images are combined in the detector
19-km visibility to improve the effective integration time and SNR. The
GSD im effective integration time is given by
Np
" line rate’ 39

tance panels can be deployed on the ground, with typical

values forppign andpyo,, being 90% and 10%, respectively. \here the line rate is the number of lines of image data
Great care must be taken to assure that any variability in -|jected per second in the along-scan direction, ing,

the surface reflectance of the panels is well below the de-ig the number of TDI stages. For the imaging éonditions
tectable limit of the system. listed in Table 1, the Model 1000 camera would use 10 TDI

_Although image-based SNR metrics are useful in deter- go0a5 * which gives an effective integration time of 1.45
mining the performance of an operational remote sensing o

system, they are generally not practical for the design of *"Tpa scenes used for the image simulations are panchro-
such systems. To accurately compare the performance of

; X matic aerial images collected on high-resolution film with a
different systems, a standard set of images would need t0ragq|tion less than 0.2 m. The images were digitized to an
be defined and acquired for all systems. Image-processing

h h h d 11-bit dynamic range and a 0.2-m sampling distance. Fig-
enhancements, such as contrast enhancements or edgeye 5 shows the processing steps used to generate the high-
sharpening filters, can significantly change the SNR value fidelity image simulations. MODTRAN 3.5 was used to

c_alc_ulatelgf. Iiur;[het[]mqre, sharp;]e_nrl]ng filters can taddtectiﬁe'calculate the radiance terms $yge; aNd Spackgrouns @nd a

ringing efiects 1o he 1mage, which can propagate Into e, 5o, 1o qat reflectance value was used to calculate

uniform areas needed for this calculation. This paper will . . - .
Spackground 1€ signal level of the image simulations was

fs?sc %Sf ?:rfoTE Srgﬁgilr(]:; 2;2?2::: ntal to the design and analy changed by varying the integration time of the Model 1000
' camera. The image smear was held constant, and the QSE
) . was changed as necessary to avoid image saturation at the
3 Image Simulations longer integration times. Noise was added to the images
In order to understand the image quality of remote-sensing using a Gaussian random number generator having a stan-
imaging satellite designs in terms of the different SNR met- dard deviation equal to ;e
rics, an imaging system was modeled and images with dif-  Figure 6 shows a subsection of the image simulations
ferent signal levels were simulated. magnified < for effective integration times of 10, 5, 1.45,
The design of the Kodak Space Remote Sensing Cam-0.5, 0.1, 0.05, 0.02, and 0.01 ms. Figure 7 shows a subsec-
era, Model 1000, was modeled for this analysis. The cam- tion of the image simulations magnifiedx4for effective
era is a Ritchey Chretien telescope with a linear CCD de- integration times of 1.45, 0.5, 0.1, and 0.05 ms, to show the
tector array. Table 1 lists the optics and detector design subtle changes in the image quality between these images.
parameters as well as the imaging conditions used for theEach image simulation was processed with edge-
simulations. The Model 1000 camera also contains four sharpening filters to enhance the detail in the image. The
multispectral bands, but the focus of this analysis will be on optimal edge-sharpening filter for each image was deter-
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- "4 v
< NP

Fig. 6 Image simulations of the Kodak Space Remote Sensing Camera, Model 1000, magnified 2Xx
for effective integration times of (a) 10 ms, (b) 5 ms, (c) 1.45 ms, (d) 0.5 ms, (e) 0.1 ms, (f) 0.05 ms,
(g) 0.02 ms, and (h) 0.01 ms.
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Fig. 7 Image simulations of the Kodak Space Remote Sensing Camera, Model 1000, magnified 4X
for effective integration times of (a) 1.45 ms, (b) 0.5 ms, (c) 0.1 ms, (d) 0.05 ms.

mined by processing each image with a series of filters with levels for visible images. Separate military NIIRS scales
varying gains and visually inspecting the image to deter- have been developed for visible, infrared, radar, and multi-

mine the best filter. This filter maximized the visual inter- spectral sensor systems, because the exploitation tasks for
pretability of the image, i.e., a filter with a lower gain each sensor type can be very different.
would render the image too blurry, while a filter with a

Although NIIRS is defined as an integer sca\IIRS
higher gain would reduce the interpretability due to noise

ratings at fractional NIIRS are performed to measure small
amplification and correlation or to unacceptable edge ring- differences in image quality between two images. A

ing. The white-noise gain of the filters selected for the im- ANIIRS that is less than 0.1 NIIRS is usually not visually
age simulations in this study ranged between 1.0 and 5.5.perceptible and does not affect the interpretability of the
Finally, after edge sharpening, contrast and tonal enhanceimage, whereas ANIIRS above 0.2 NIIRS is easily per-

ments were applied to all of the images to optimize the ceptible. The NIIRS scale is designed so that M¥IRS
quality.

ratings are independent of the NIIRS rating of the image,
e.g., a degradation that produces a 0.2 NIIRS loss in image
4  SNR and Image Interpretability

quality on a NIIRS 6 image will also produce a 0.2 NIIRS
The SNR metrics calculated for each image simulation 0SS on a NIIRS 4 image.

need to be related to a measure that quantifies the effect 1 hegeneral image quality equatiofGIQE) was devel-
that the noise has on a user's ability to interpret the infor- OP€d as a tool to predict the NIIRS rating of an image given

mation in the image. the imaging system design and collection paramét@ise
The National Imagery Interpretability Rating Scale CGIQE for visible EO systems is
(NIIRS)’ is a 0-to-9 scale that quantifies the interpretability

of an image and was initially developed for the reconnais- NIIRS=10.25%-alog;(GSDgw+ b l0g;0RERGw
sance community. The scale is an important tool for defin-

ing imaging requirements. If more information can be ex- —0-656‘|GM—0-3445i, (39
tracted from the image, then the NIIRS rating will increase. NR
Table 2 gives examples of exploitation tasks from the ci-

vilian NIIRS that can be accomplished at different NIIRS where GSR,, is the geometric mean GSD, RER is the
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Table 2 Example exploitation tasks that can be accomplished at different NIIRS levels from the
civilian visible-light NIIRS.

NIIRS
rating
level Exploitation tasks
0 Interpretability of the imagery is precluded by obscuration, degradation,
or very poor resolution.
1 Distinguish between major land use classes (urban, forest, water, etc.).
Distinguish between runways and taxiways at a large airfield.
2 Detect large buildings (e.g., hospitals, factories).
Identify road patterns, like cloverleafs, on major highway systems.
3 Detect individual houses in residential neighborhoods.
Distinguish between natural forest stands and orchards.
4 Detect basketball court, tennis court, volleyball court in urban areas.
Identify farm buildings as barns, silos, or residences.
5 Identify tents (larger than two person) at established recreational camping areas.
Detect large animals (e.g., elephants, rhinoceros) in grasslands.
6 Identify automobiles as sedans or station wagons.
Identify individual telephone/electric poles in residential neighborhoods.
7 Detect individual steps on a stairway.
Identify individual railroad ties.
8 Count individual baby pigs.
Identify windshield wipers on a vehicle.
9 Identify individual barbs on a barbed wire fence.

Detect individual spikes in railroad ties.

geometric mean of the normalized relative edge responsetime. A total of 66 images were used in the evaluation. The
(RER), Hgy is the geometric mean height overshoot images were rated by four image scientists experienced
caused by the edge sharpeni@gis the noise gain fromthe ~ with ANIIRS evaluations. All ratings were performed via a

edge sharpening, and SNR is the signal-to-noise ratio. Thesoftcopy flicker comparison on a calibrated high-resolution

coefficienta equals 3.32 and equals 1.559 if RERy, softcopy monitor. Each image scientist was allowed to
=0.9, anda equals 3.16 and equals 2.817 if RERy roam and magnify the images while they were being rated.
<009 The experiment was designed so that the presentation order

The SNR term of the GIQE is calculated using SR of all comparisons was randomized for each observer.
in Bq. (27) for phign=15% andpioy,=7%; thus 5 Results and Conclusions
Stargelpt = Ap=8% T_ables 3-5 list various SNR me_trics for each of t_he image
SNRg 0= e , (40) simulations produced. Table 3 lists the SNR metrics calcu-
Onoise lated without incorporating the system MTF or the noise
gain from the enhancement processing. Table 4 incorpo-
rates the noise gain, and Table 5 incorporates the system
MTF value at Nyquist, both of which reduce the calculated
. : S ; SNR compared to Table 3. Note that the SNR values vary
different SNRs requires determining the optimal edge- oreaty for the same image depending on the SNR metric
sharpening filter to apply to each image, because the sharpy,geq "The Model 1000 camera, at an effective integration
ening filter will influence RERy, Hgw, andG. The image  {ime of 1.45 ms and at the collection parameters listed in
analyst will increase or decrease the strength of the edge-Taple 1, can have an SNR value ranging between 3 and
sharpening filter until the interpretability of the image is g7 depending on the metric used, even though they all
optimized. If the edge-sharpening filter is not changed, then represent the same image quality.

fthe predicted change in NIIRS between two different SNRs Relating the image quality of a system design to NIIRS

The GIQE can be used to predict the change in the image
interpretability of each image as the SNR changes. Using
the GIQE to predict thANIIRS between two images with

IS as a function of SNR is desirable if image interpretability is
1 1 the driving factor. The averageNIIRS rating for each im-
_ _ age simulation is shown in Tables 3-5, along with the 95%
ANIIRS 0'34G(SNR1 SNRZ)' (42) confidence interval. Standard statistical analysis was per-

formed on the ratings, including an ANOVA analysis to
In order to better understand the relationship between test for outliers(none were found Figure 8 shows a linear
the various SNR values calculated and image interpretabil- fit between theANIIRS ratings and the NEp values from
ity, a limited ANIIRS evaluation was conducted by com- Table 3, with the linear relationship given by
paring each of the simulated images with the image simu-
lation with the 10-ms(high-SNR effective integration ANIIRS=—(0.17+0.02NEA p(%). (42

582 Optical Engineering, Vol. 40 No. 4, April 2001



Fiete and Tantalo: Comparison of SNR image quality . . .

Table 3 Various SNR metrics for each image simulation.

Image # 1 2 3 4 5 6 7 8
tin (MS) 10 5 1.45 0.5 0.1 0.05 0.02 0.01
ANIIRS ratings 0.0%+0.0 0.0%+0.0 0.0+0.0 0.0+0.0 -0.2+0.1 -0.4+0.1 —-1.1+0.2 -1.8+0.2
ANIIRS GIQE -0.01 —0.02 -0.04 —-0.08 —0.29 -0.94 -13 -15
SNR,=100% 782 551 291 164 59 35 16 9
SNR,=15% 240 167 84 43 12 6 3 1
SNRy ,phigh=90% pio,,=10% 656 462 244 137 49 29 13 7
SNRy,phigh=26% pion=10% 215 151 77 40 12 7 3 1
SNRy ,Phigh=15% piow=7% 128 89 45 23 6 3 1 1
NEA parget=15% 0.06 0.09 0.18 0.35 1.26 2.36 5.64 11.1
Table 4 Various SNR metrics for each image simulation divided by the noise gain.
Image # 1 2 3 4 5 6 7 8
tine (MS) 10 5 1.45 0.5 0.1 0.05 0.02 0.01
ANIIRS ratings 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.02 -0.2+0.1 -0.4+0.1 -1.1+0.2 -1.8+0.2
ANIIRS GIQE -0.01 —-0.02 —0.04 —-0.08 -0.29 -0.94 -1.3 -15
SNR,=100% 143 101 53 30 16 10 16 5
SNR,=15% 44 31 15 8 3 2 3 1
SNRy,phigh=90% pjo,,=10% 120 85 45 25 13 8 13 4
SNR s ,Phigh=26% pioy,=10% 39 28 14 7 3 3 1
SNRy ,phigh=15% piow="7% 23 16 8 4 2 1 0
NEA piarget=15% 0.34 0.49 0.98 1.92 4.60 8.64 5.64 21.1
Table 5 Various SNR metrics for each image simulation multiplied by the MTF at Nyquist.
Image # 1 2 3 4 5 6 7 8
tine (MS) 10 5 1.45 0.5 0.1 0.05 0.02 0.01
ANIIRS ratings 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.02 -0.2+0.1 -0.4%+0.1 -1.1+0.2 -1.8+0.2
ANIIRS GIQE -0.01 -0.02 —0.04 —0.08 -0.29 -0.94 -1.3 -15
SNR,=100% 48 34 18 10 4 2 1 1
SNR,=15% 15 10 5 3 1 0 0 0
SNR 4 ,Phigh=90% pioy,=10% 41 29 15 3 2 1 0
SNRy ,phigh=26% pion=10% 13 9 5 1 0 0 0
SNRy,phigh=15% piow=7% 8 6 3 0 0 0 0
NEA pargei=15% 1.01 145 2.88 5.68 20.3 38.1 91.0 180
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Fig. 8 Linear fit between the ANIIRS ratings and the NEAp values
from Table 3.

This suggests that the relationship betwe¥XIIRS and
SNR,, for the Model 1000 remote sensing camera is sim-
ply a linear relationship with the reciprocal of SNNR The
GIQE ANIIRS predictions, shown in Tables 3-5, are sta-
tistically different from the ANIIRS ratings greater than
—0.2, and they do not fit a linear model. It should be noted
that the image scientists commented that the images with
NEAp>5% from Table 3 were difficult to rate.

Table 6 shows the values of the various SNR metrics
that produce a predictesNIIRS of —0.1 using the relation-
ship in Eq.(42). Images will suffer a loss in NIIRS from
the noise if the predicted SNR values for a remote sensing
system design are not greater that the values shown in
Table 6, except for the NEkp, which needs to be less than
those shown in Table 6. The 95% confidence interval for
the values in Table 6 i£12%. It should be noted that the
GIQE predicts aANIIRS of —0.14 for the SNR values
shown in Table 6.

Predicting the NIIRS rating for different system designs
at various SNRs is difficult because the interaction between
the image interpretability and the noise, the MTF, and the
enhancement processing is difficult to model. This is espe-
cially true when comparing system design concepts that
change the MTF. For example, if tikf#)/p increases in a
system design while the SNR is held constant, then a stron-

ger edge enhancement will be required to enhance the edges.
sharpness, but this will increase the noise gain that makes

Table 6 Values for the various SNR metrics that produce a ANIIRS
of —0.1 using the evaluation results.

Divided by the Multiplied by the

SNR metric Value noise gain MTF at Nyquist
SNR, - 100% 109 20 6.7
SNR,_ 159 25 4.7 1.6
SNRy,:

Phigh=90%, pio,=10% 90 17 5.6
Prigh=26%, p1oy=10% 25 4.6 15
Phigh=15%, pioy=7% 14 25 0.8
NEAp (%): 0.59 3.2 9.5

Ptarget™ 15%
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the image appear noisier. A similar difficulty at predicting
the NIIRS is seen with sparse aperture systems, which re-
quire stronger edge enhancement processing, therefore in-
creasing the noise gain. High-fidelity image simulations can
be produced for system designs at various SNRs in order to
determine an acceptable SNR to build the system at, but
image evaluations will still need to be conducted to relate
them to NIIRS.

The SNR values calculated in Tables 3-5 and Table 6
can be used as a reference to help understand how each
SNR metric relates to image quality by comparing the val-
ues with the image simulations and tAdIIRS ratings.
This reference should be accurate for variations to the im-
aging conditions used in this study, but will be less accurate
for system designs that deviate considerably from the
model 1000 remote sensing camera design used in this
analysis. It is always important for the designers of remote
sensing systems to clearly state the SNR metric that is be-
ing used when quoting an SNR value for the system and to
understand the relationship of the SNR value to image
quality.
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